• Title/Summary/Keyword: lattice space

Search Result 260, Processing Time 0.023 seconds

Study on the Thrust Generation of a Flat Plate in Heave Oscillation Using a Lattice-Boltzmann Method (격자볼츠만 법을 사용한 히브진동 운동하는 평판에서의 추력발생 연구)

  • An, Sang-Joon;Kim, Yong-Dae;Maeng, Joo-Sung;Lee, Jong-Shin;Han, Cheol-Heui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.397-403
    • /
    • 2007
  • Insect and birds in nature flap their wings to generate fluid dynamic forces that are required for locomotion. To develop a feasible flapping MAV, it is of crucially important to study the fundamental relations between flapping motion and thrust generation. In this paper, the onset conditions of the thrust generation of a heaving flat plate is investigated using a Lattice-Boltzmann method. For a fixed heaving amplitude of h/C=0.5, the effect of reduced frequency on the thrust generation is investigated. For several values of heaving amplitude(h/C=0.25, 0.325, 0.50), the effect of reduced frequency on the thrust generation is also investigated. It can be said that Strouhal number is more important rather than reduced frequency in case of thrust generation. It is found that the critical Strouhal number over which the flat plate starts to produce thrust is around 0.1. Thrust is an exponential function of the Strouhal number.

ON NOETHERIAN PSEUDO-PRIME SPECTRUM OF A TOPOLOGICAL LE-MODULE

  • Anjan Kumar Bhuniya;Manas Kumbhakar
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • An le-module M over a commutative ring R is a complete lattice ordered additive monoid (M, ⩽, +) having the greatest element e together with a module like action of R. This article characterizes the le-modules RM such that the pseudo-prime spectrum XM endowed with the Zariski topology is a Noetherian topological space. If the ring R is Noetherian and the pseudo-prime radical of every submodule elements of RM coincides with its Zariski radical, then XM is a Noetherian topological space. Also we prove that if R is Noetherian and for every submodule element n of M there is an ideal I of R such that V (n) = V (Ie), then the topological space XM is spectral.

UNITARY INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$

  • Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.421-428
    • /
    • 2009
  • Given operators X and Y acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this paper, we showed the following : Let $\mathcal{L}$ be a subspace lattice acting on a Hilbert space $\mathcal{H}$ and let $X_i$ and $Y_i$ be operators in B($\mathcal{H}$) for i = 1, 2, ${\cdots}$. Let $P_i$ be the projection onto $\overline{rangeX_i}$ for all i = 1, 2, ${\cdots}$. If $P_kE$ = $EP_k$ for some k in $\mathbb{N}$ and all E in $\mathcal{L}$, then the following are equivalent: (1) $sup\;\{{\frac{{\parallel}E^{\perp}({\sum}^n_{i=1}Y_if_i){\parallel}}{{\parallel}E^{\perp}({\sum}^n_{i=1}Y_if_i){\parallel}}:f{\in}H,n{\in}{\mathbb{N}},E{\in}\mathcal{L}}\}$ < ${\infty}$ range $\overline{rangeY_k}\;=\;\overline{rangeX_k}\;=\;\mathcal{H}$, and < $X_kf,\;X_kg$ >=< $Y_kf,\;Y_kg$ > for some k in $\mathbb{N}$ and for all f and g in $\mathcal{H}$. (2) There exists an operator A in Alg$\mathcal{L}$ such that $AX_i$ = $Y_i$ for i = 1, 2, ${\cdots}$ and AA$^*$ = I = A$^*$A.

NORMAL INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$

  • Jo, Young-Soo
    • Honam Mathematical Journal
    • /
    • v.30 no.2
    • /
    • pp.329-334
    • /
    • 2008
  • Given operators X and Y acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, the following is proved: Let $\mathcal{L}$ be a subspace lattice on $\mathcal{H}$ and let X and Y be operators acting on a Hilbert space H. Let P be the projection onto the $\overline{rangeX}$. If PE = EP for each E ${\in}$ $\mathcal{L}$, then the following are equivalent: (1) sup ${{\frac{{\parallel}E^{\perp}Yf{\parallel}}{{\parallel}E^{\perp}Xf{\parallel}}}:f{\in}\mathcal{H},\;E{\in}\mathcal{L}}$ < ${\infty},\;\overline{rangeY}\;{\subset}\;\overline{rangeX}$, and there is a bounded operator T acting on $\mathcal{H}$ such that < Xf, Tg >=< Yf, Xg >, < Tf, Tg >=< Yf, Yg > for all f and gin $\mathcal{H}$ and $T^*h$ = 0 for h ${\in}\;{\overline{rangeX}}^{\perp}$. (2) There is a normal operator A in AlgL such that AX = Y and Ag = 0 for all g in range ${\overline{rangeX}}^{\perp}$.

Contrast Sensitivity as a Function of Spatial Frequency for 12 Year Old Child-Eye (눈의 공간주파수와 대비 민감도 함수(CSF) 특성에 대한 연구)

  • Kim, Yong Geun;Park, Sang-An
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.1
    • /
    • pp.63-68
    • /
    • 1999
  • It was made of a chart by new method to be measured the contrast sensitivity for a spatial frequency, and the mean luminance of a lattice frequency was made to three forms of 25, 50, 75% and let it to be ready a CS value from 0 to $10^3$. As a result of measuring of the CS value for a spatial frequency on a target of 12 year old students, CS value decreased of according to down the average luminance value and also the peak position shift to low spatial frequency. The low visioned person decreased the CS value in side of high frequency or in space of total frequency. By the lattice adaptation, a measured CS value was decreased in circumstance regions of adapted space frequency.

  • PDF

SELF-ADJOINT INTERPOLATION ON Ax = y IN CSL-ALGEBRA ALGL

  • Kang, Joo-Ho;Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.503-510
    • /
    • 2004
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i\;=\;y_i,\;for\;i\;=\;1,\;2,\;\cdots,\;n$. In this paper the following is proved: Let H be a Hilbert space and L be a commutative subspace lattice on H. Let H and y be vectors in H. Let $M_x\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_ix\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;and\;M_y\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_iy\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}. Then the following are equivalent. (1) There exists an operator A in AlgL such that Ax = y, Af = 0 for all f in ${\overline{M_x}}^{\bot}$, AE = EA for all $E\;{\in}\;L\;and\;A^{*}\;=\;A$. (2) $sup\;\{\frac{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;<\;{\infty},\;{\overline{M_u}}\;{\subset}{\overline{M_x}}$ and < Ex, y >=< Ey, x > for all E in L.

SOLVING OPERATOR EQUATIONS Ax = Y AND Ax = y IN ALGL

  • LEE, SANG KI;KANG, JOO HO
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.417-424
    • /
    • 2015
  • In this paper the following is proved: Let L be a subspace lattice on a Hilbert space H and X and Y be operators acting on a Hilbert space H. If XE = EX for each E ${\in}$ L, then there exists an operator A in AlgL such that AX = Y if and only if sup $\left{\frac{\parallel{XEf}\parallel}{\parallel{YEf}\parallel}\;:\;f{\in}H,\;E{\in}L\right}$ = K < $\infty$ and YE=EYE. Let x and y be non-zero vectors in H. Let Px be the orthogonal pro-jection on sp(x). If EPx = PxE for each E $\in$ L, then the following are equivalent. (1) There exists an operator A in AlgL such that Ax = y. (2) < f, Ey > y =< f, Ey > Ey for each E ${\in}$ L and f ${\in}$ H.

POSITIVE INTERPOLATION PROBLEMS IN ALG𝓛

  • KANG, JOO HO;KIM, KI SOOK
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.379-389
    • /
    • 2004
  • Given operators X and Y acting on a Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_i=Y_i$, for $i=1,2,{\cdots},n$. In this article, we obtained the following : Let ${\mathcal{H}}$ be a Hilbert space and let ${\mathcal{L}}$ be a commutative subspace lattice on ${\mathcal{H}}$. Let X and Y be operators acting on ${\mathcal{H}}$. Then the following statements are equivalent. (1) There exists an operator A in $Alg{\mathcal{L}}$ such that AX = Y, A is positive and every E in ${\mathcal{L}}$ reduces A. (2) sup ${\frac{{\parallel}{\sum}^n_{i=1}\;E_iY\;f_i{\parallel}}{{\parallel}{\sum}^n_{i=1}\;E_iX\;f_i{\parallel}}}:n{\in}{\mathbb{N}},\;E_i{\in}{\mathcal{L}}$ and $f_i{\in}{\mathcal{H}}<{\infty}$ and <${\sum}^n_{i=1}\;E_iY\;f_i$, ${\sum}^n_{i=1}\;E_iX\;f_i>\;{\geq}0$, $n{\in}{\mathbb{N}}$, $E_i{\in}{\mathcal{L}}$ and $f_i{\in}H$.

  • PDF

SELF-ADJOINT INTERPOLATION PROBLEMS IN ALGL

  • Kang, Joo-Ho;Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.387-395
    • /
    • 2004
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_{i}\;=\;Y_{i}$, for i = 1,2,...,n. In this article, we showed the following: Let H be a Hilbert space and let L be a subspace lattice on H. Let X and Y be operators acting on H. Assume that range(X) is dense in H. Then the following statements are equivalent: (1) There exists an operator A in AlgL such that AX = Y, $A^{*}$ = A and every E in L reduces A. (2) sup ${\frac{$\mid$$\mid${\sum_{i=1}}^n\;E_iYf_i$\mid$$\mid$}{$\mid$$\mid${\sum_{i=1}}^n\;E_iXf_i$\mid$$\mid$}$:n{\epsilon}N,f_i{\epsilon}H\;and\;E_i{\epsilon}L}\;<\;{\infty}$ and = for all E in L and all f, g in H.

SELF-ADJOINT INTERPOLATION ON Ax = y IN ALG$\cal{L}$

  • Kwak, Sung-Kon;Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.981-986
    • /
    • 2011
  • Given vectors x and y in a Hilbert space $\cal{H}$, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equations $Tx_i=y_i$, for i = 1, 2, ${\cdots}$, n. In this paper the following is proved : Let $\cal{L}$ be a subspace lattice on a Hilbert space $\cal{H}$. Let x and y be vectors in $\cal{H}$ and let $P_x$ be the projection onto sp(x). If $P_xE=EP_x$ for each $E{\in}\cal{L}$, then the following are equivalent. (1) There exists an operator A in Alg$\cal{L}$ such that Ax = y, Af = 0 for all f in $sp(x)^{\perp}$ and $A=A^*$. (2) sup $sup\;\{\frac{{\parallel}E^{\perp}y{\parallel}}{{\parallel}E^{\perp}x{\parallel}}\;:\;E\;{\in}\;{\cal{L}}\}$ < ${\infty}$, $y\;{\in}\;sp(x)$ and < x, y >=< y, x >.