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SOLVING OPERATOR EQUATIONS AX =Y AND Az =y IN
ALGLT

SANG KI LEE AND JOO HO KANG*

ABSTRACT. In this paper the following is proved: Let £ be a subspace
lattice on a Hilbert space H and X and Y be operators acting on a Hilbert
space H. If XFE = EX for each E € L, then there exists an operator A in

YFE
AlgL such that AX =Y if and only if sup{ I il :fEH, E€ E} =

IXEfI
K <ocoand YE = EYE.

Let  and y be non-zero vectors in H. Let P, be the orthogonal pro-
jection on sp(z). If EP, = P, FE for each E € L, then the following are
equivalent.

(1) There exists an operator A in Algl such that Az = y.

(2) < f,Ey >y =< f,Ey > Ey for each E € L and f € H.
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1. Introduction

Interpolation problems have been developed by many mathematicians since
Douglas considered a problem to find a bounded operator A satisfying AX =Y
for two operators X and Y acting on a Hilbert space H in 1966 [1, 2, 3, 4, 5, 6].
Douglas used the range inclusion property of operators to show necessary and
sufficient conditions for the existence of an operator A such that AX =Y. A
condition for the operator A to be a member of .4 which is a specified subalgebra
of B(H) can be given. In this paper, authors investigated to find sufficient and
necessary conditions that there exists an operator A in Algl satisfying AX =Y
for operators X and Y acting on a Hilbert space H and there exists an operator B
in AlgL satisfying Bx = y for two vectors z and y in ‘H. And authors investigated
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the above interpolation problems for finitely or countably many operators and
vectors.

The simplest case of the operator interpolation problem relaxes all restrictions
on A, requiring it simply to be a bounded operator. In this case, the existence
of A is nicely characterized by the well-known factorization theorem of Douglas.

Theorem 1.1 (R.G. Douglas [1]). Let X and Y be bounded operators acting on
a Hilbert space H. Then the following statements are equivalent:

(1) rangeY™* C range X*

(2) Y*Y < N2X*X for some A >0

(8) there exists a bounded operator A on H so that AX =Y.
Moreover, if (1), (2) and (3) are valid, then there exists a unique operator A so
that

(a) Al = inf{p: YV < pX*X}

(b) kerY* = kerA* and

(¢) rangeA* C rangeX .

We need to look at the proof of Theorem A carefully. Then we know that the
image of A on rcmgeXL is 0 from the proof of (3) by (2).

2. The Equation AX =Y in Algl

Let H be a Hilbert space. A subspace lattice L is a strongly closed lattice
of orthogonal projections on H containing the trivial projections 0 and I. The
symbol AlgL denotes the algebra of bounded operators on H that leave invariant
every projection in £; AlgL is a weakly closed subalgebra of B(H). A lattice £
is a commutative subspace lattice, or CSL, if the projections in £ commute; in
this case, AlgL is called a CSL algebra. Let x1,--- ,x, be vectors of H. Then
sp({z1,- - ,xn}) = {oxy + avxo + - + apzy, 1 ar a0, ,a, € C ). Let
M be a subset of H. Then 3 means the closure of M and 3 the orthogonal
complement of M. Let N be the set of natural numbers and C be the set of
complex numbers.

Let £ be a subspace lattice and A, X and Y be operators acting on a Hilbert
space H such that AX =Y. If XE = EX, then |YEf|| = [|[AXEf| =
JAEX f|| < ||A|J|XEf] for all E € £ and for all f in H. If we adopt the
convention that a fraction whose numerator and denominator are both zero is
equal to zero, then the inequality above may be stated in the form

au {7
IXES]

Theorem 2.1. Let L be a subspace lattice on a Hilbert space H and X and Y
be operators acting on the Hilbert space H. If XE = EX for each E in L, then
the following are equivalent.

(1) There exists an operator A in AlgL such that AX =Y.

L fEeH, Ee£}§||A||_
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(2) Sup{”f(?f”” feH, Fe L} =K < oo and YE = EYFE for each E

mn L

YE
Proof. Assume that sup { ||XEJJZ| feH, EFe E} =K<ocand YE=FEYEFE

for each E in £. Then for each F in L, there exists an operator Ag in B(H)
such that Ag(XFE)=YE = EYE by Theorem A. In particular, if £ = I, then
we have an operator Ay in B(#H) such that A;X =Y . So Agp(XFE) = A;XE =
FEA;XE for each F in L. Since EX = XFE foreach F € L, A;{XE = FA/EX.
Hence A;E = EA[FE on rangeX. Let h be in rcmgeXl. Since EX = XF for
each E in £, < Eh, Xf >=< h, EXf >=< h,XEf >=0. So Eh € rangeX .
By the definition of A7, (A;E)h = 0 = (EA;E)h. Hence A;E = EA;E on
rangeXL. So Aj is an operator in AlgL. O

Assume that Xi,---,X,, and Y7, -+ ,Y,, are operators in B(#H) and A is an
operator in Algl such that AX; = Y; for each i = 1,--- ,n. Then Y;Ef; =
AX;Ef; foreachi=1,--- 'n, E € L and each f; in H. Hence

| ZYiEfiH = ZAXiEfiH
i=1 i=1

< 1Al ZXiEfi“

i=1

for all E € £ and all f; in ‘H. If, for convenience, we adopt the convention that a
fraction whose numerator and denominator are both zero is equal to zero, then
the inequality above may be stated in the form

122, YiEfil] }
SUp ——=p————-: i €H, E€ L} <|A].
{II S XiEfi IA]

Theorem 2.2. Let Xy, ---,X,, and Y1, ---,Y, be bounded operators acting on
H. If X;E = EX; for each E in L and i in {1,2,--- ,n}, then the following are
equivalent.

(1) There exists an operator A in AlgL such that AX; =Y; fori=1,2,--- n.

" YEf;
(Q)Sup{M:fieH, EEC}:K<ooandYZ-E:EYZ-Ef0r
i=1 1)

eachi=1,--- ,n and E in L.

" YEf;
Proof. Assume that SUP{M s fi €H, EEL} = K < oo and
i=1 7 7

Y,E = FEY;FE foreachi=1,--- ;nand F € L. Let E be in £ and

Mp = {ZXiEfi D fieH }

i=1
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Define Ap : Mg — Hby Ag(};_ XiEf;) =Y i, YiEf;. Then Ag is well-
defined and bounded linear. Extend Ag on Mg continuously. Define Agf =0

for each f € MiEL. Then Ag : H — H is abounded linear and AgEX; = Y;FE
fori=1,---,n. If E=1,then A;X; =Y, fori=1,--- n. Since EX; = X;FE
and Y;E = EY;E for each ¢ = 1,---,n, AgX;F = A;X;E = A;EX; and
ApX,E = FA;X;E = EA;EX,;. Hence A;JE = EA;E on Mg. Let h be
in MiEL. Then since EX; = X;FE for each i = 1,--- ,n, < Eh, X;f >=<
h,EX;f >=< h,X;Ef >=0 for each f € H. So

i=1

By the definition of A;, A;EFh = 0 = EA;FEh for each F € L. Hence AjF =
FEA;FE on ./\/IEJ_. So Aj is an operator in Algl O

We can generalize the above Theorem to the countable case easily.

Theorem 2.3. Let X; and Y; be bounded operators acting on H for all © =
1,2,---. If X4E = EX; for each E in L and i in N, then the following are
equivalent.

(1) There exists an operator A in AlgL such that AX; =Y; fori=1,2,---.

1> iy YiESi]|
(2)sup{fn:f¢€7-l, EeLlLandmeN; =K <oo and V;E =
1221 XiEfi
EY,E for eachi=1,--- and E € L.
1>y ViEfi|
Proof. Assume that sup {,’n cfi€eH, E€eLandmeN; =K <
13221 XiEfi|

oo and Y;E = FY;FE for eachi =1,---. Let E be in £ and

NE:{ZXZ-Efi : fiE’HandmeN}
i=1 .

Define Ag : Ng — Hby Ag(>ir, X,Ef;) =>." | YiEf;. Then Ag is well-
defined and bounded linear. Extend Ag on Ng continuously. Define Agf =0

for each f € JTEl. Then Ag : H — H is a bounded linear and AgEX,; =
Y,E fori =1,---. If E = I, then A;X; = Y; fori = 1,---. Since EX; =
X,F and Y;E = EY;E for eachi = 1,---, AgX;E = A;X;F = A;EX; and
AEXZE = EAIXlE = EAIEXl Hence A[E = EA]E OH.ATE. Let h be in ./\TEJ_.
Then since FX; = X;F for each i = 1,---, < Eh, X;f >=< h,EX,;f >=<
h, X;Ef >=0 for each f € H. So

<Eh,zn:Xifi>:0

i=1
for each n € N. By the definition of A;, AfEh =0 = EA;FEh for each F € L.
Hence AjE = EAE on J\TEL. So Ay is an operator in AlgL. O
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3. The Equation Az =y in Algl

Let x and y be non-zero vectors in a Hilbert space H. Let X = 2 ® y and
Y =y®y . Then for fin H and F € L,

I[YEf[| = [(y@y)Ef]
=[<Ef,y>yl
=<t By >yl

[XEf[| = (z@y)Ef|
=[<Efy>z
=| < f,Ey >z

If for convenience, we adopt the convention that a fraction whose numerator and
denominator are both zero is equal to zero, then for f in H and F € L,

IYEf _ [[<f Ey>yl
IXEFl I < f, By >
is
M or 0 .
]
YFE
Hence sup{ f|:f€HandE€£} = M YEf =< f,Ey > y and
[XEf] ]|

EYEf =< f,Ey > Ey for each f in ‘H and each E € L.

We can obtain the following theorem by Theorem 2.1.

Theorem 3.1. Let L be a subspace lattice on H and let x and y be non-zero
vectors in H. Let P, be the orthogonal projection on sp(x). If EP, = P,E for
each E € L, then the following are equivalent.

(1) There exists an operator A in AlgL such that Ax = y.

(2) < f,Ey>y=<f,Ey>FEy for each E€ L and f € H.

Let z;,y;(¢ = 1,---,n) be non-zero vectors in H. Let X; = x; ® y; and

Y; =y; ®y;. Then for f; in H and F € L

1D YiELll = 1> (i @) Efl
i=1

i=1

= || Z < Efi,yi > yill

i=1

n
1=1

n

[ ZXiEfiH = || Z(%’ @ yi)Efill
=1 1

1=
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n
=Y < Efi,yi > aill

i=1
=1 < fi Byi > .
i=1
I YiEL 1325, < fis By > il
Hence 1= = = and V;Ef =< f, Ey; > y; and
|22 X Efill [ 22 < fi By > |

< EY,Ef >=< f,Ey; > Ey; foreach E€ L, fe Handi=1,--- ,n.

We can obtain the following theorem by Theorem 2.2.

Theorem 3.2. Let L be a subspace lattice on H and let x1,- -+ ,z, andyi, -+ ,Yn
be vectors in H. Let Py, be the orthogonal projection on sp(x;). If EP,, = P, E
foreach E € L andi=1,---,n, then the following are equivalent.

(1) There exists an operator A in AlgL such that Ax; = y; fori=1,2,--- n.

>0y < fi EByi > yill
QSup{ = s fieH, EeL =Ky < oo and
&SV ISE, < B> o
< f,By; >y; =< f,Ey; > BEy; foreachEc€ L, feH andi=1,---,n.

We can extend Theorem 3.2 to countably infinite vectors and get the following
theorem from Theorem 2.3.

Theorem 3.3. Let L be a subspace lattice on H and let {x;} and {y;} be vectors
in H for i € N. Let P, be the orthogonal projection on sp(z;). If EP,, = P, E
foreach E € L andi=1,2,---, then the following are equivalent.

(1) There exists an operator A in AlgL such that Ax; =y; fori=1,2,---.

>0 < fi, Byi > il

QSup{ = s fi€H, E€eL, neNy =Ky < oo and
B VIS, < By > o

< fyBy; >y, =< f,Ey; > By; foreach E€ L, feH andi=1,2,---.

Theorem 3.4. Let L be a subspace lattice on a Hilbert space H and x and y be
vectors in H. Let P, be the orthogonal projection on sp(x). If EP, = P,E for

E
each E € L and sup {”Ey|||| :E e £} = K < oo, then there exists an operator
x
A in AlgL such that Az = y.
E
Proof. Assume that sup{”EyH E e E} = K < oo. Then for each E in L,
x

there exists an operator Ag in B(#) such that Az Ex = Ey by Theorem 1.1. In
particular, if F = I, then we have an operator Ay in B(#H) such that Ajx = y.
Let’'sput A; = A. So AgFx = Ey = EAxz foreach E € L. Hence AgF = EAon
sp(x). Let h be in sp(z)". Since EP, = P,E for cach E € L, < Eh, Ex >=<
h,Ex >=< h,EP,x >=< h,P,Ex >= 0. Hence Eh € sp(Ea:)L. By the
definition of Ag and A, AgEh =0 = EAh for each F in L. Hence AgE = EA
on H for each F in L. So A = EA. Therefore A is in AlgL. O
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Theorem 3.5. Let L be a subspace lattice on a Hilbert space H and x1,--- ,xp
and y1,- -+ ,yn be vectors in H. Let P, be the orthogonal projection on sp(x;).
If EP,, = P,,FE foreach E€ L andi=1,--- ,n and

E(X oy
sup{”(Zﬁflay)”:Eeﬁ7 aie(C} < oo,
IEQ = cima)|

then there exists an operator A in AlgL such that Ax; =vy; fori=1,--- n.

Proof. Assume that sup{w Eel, o € (C} < oo. Let E be
B3 =y i)
in £. Define Ap : sp({Ex1,---,Fz,}) — H by Ag(}] ,aFx;) =
(Z?zl a;Ey;). Then Ag is well-defined and bounded linear. Define Agf = 0
for each f € sp({Ex1,-- ,Ex,})". Then Ag : H — H is bounded linear and
AgFx; = FEy;fori=1,--- ,n. If E =1, then Ajx; = y; fori=1,--- ,n. Let’s
put A; = A. So AgFEx; = Ey; = FEAx; for each F € L. Hence ApE = EA
on sp({z1, - ,xn}). Let h be in sp({z1,--- 71:”})1_ Since < Eh, Ex; >=<
h,Ex; >= 0, < Eh, Y1 Ex; >= 0. So Eh € sp({Ex1,--- ,Ex,})". By the
definition of Ag and A, AgkEh =0 = EAh for each F in L. Hence AgF = EA
on H for each F in L. So A = EA. Therefore A is in AlgL. O

We ca generalize the above theorem for countable case.

Theorem 3.6. Let L be a subspace lattice on a Hilbert space H and {x;} and
{yi} be vectors in H. Let P,, be the orthogonal projection on sp(x;) for each
i=1,2,---. If EP;, = Py, E foreach E€ L andi=1,2,--- and

1B iy i)l
SUpS T — B €L, ; €C, ne Ny <oo
{IIE(Zizl ;)|

then there exists an operator A in AlgL such that Ax; =vy; fori=1,2,---.
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