• Title/Summary/Keyword: lateral loads

Search Result 765, Processing Time 0.105 seconds

Evolution of bone structure under axial and transverse loads

  • Qu, Chuanyong;Qin, Qing-Hua
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.19-29
    • /
    • 2006
  • The evolution process of an initially homogeneous bone structure under axial and transverse loads is investigated in this paper. The external loads include axial and external lateral pressure, electric, magnetic and thermal loads. The theoretical predictions of evolution processes are made based on the adaptive elasticity formulation and coupled thermo-magneto-electro-elastic theory. The adaptive elastic body, which is a model for living bone diaphysis, is assumed to be homogeneous in its anisotropic properties and its density. The principal result of this paper is determination of the evolution process of the initially homogeneous body to a transversely inhomogeneous body under the influence of the inhomogeneous stress state.

Behaviour of Multi-Storey Prefabricated Modular Buildings under seismic loads

  • Gunawardena, Tharaka;Ngo, Tuan;Mendis, Priyan
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1061-1076
    • /
    • 2016
  • Prefabricated Modular Buildings are increasingly becoming popular in the construction industry as a method to achieve financially economical buildings in a very short construction time. This increasing demand for modular construction has expanded into multi-storey applications where the effect of lateral loads such as seismic loads becomes critical. However, there is a lack of detailed scientific research that has explored the behaviour of modular buildings and their connection systems against seismic loads. This paper will therefore present the nonlinear time history analysis of a multi-storey modular building against several ground motion records. The critical elements that need special attention in designing a modular building in similar seismic conditions is discussed with a deeper explanation of the behaviour of the overall system.

The Effect of Forebody Section Shape on Wave Loads (선수선형(船首船型)의 파랑하중(波浪荷重) 특성(特性))

  • J.H.,Hwang;S.J.,Lee;J.M.,Yoo
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.1
    • /
    • pp.15-22
    • /
    • 1982
  • The effects of the forebody geometry of ships on the response function of wave loads are investigated by numerical calculations based on a strip method. For the vertical wave loads both shearing forces and bending moments, the V-shaped bow gives greater responses than the U-shaped one in regular oblique waves. These results have been clarified by the vector diagram of all static and dynamic components contributing to the resultant wave bending moment. In the present evaluation the phase relation among the components plays an important role. And the effect of the forebody geometry on lateral wave loads seems to be negligible from the result of the present investigation.

  • PDF

Critical multi-field load analysis of the piezoelectric/piezomagnetic microplates as an application in sports equipment

  • Yi Zhu
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.485-493
    • /
    • 2023
  • Critical multi-field loads and free vibration responses of the sandwich piezoelectric/piezomagnetic microplate subjected to combination of magnetoelectromechanical loads based on a thickness-stretched higher order shear deformable model using Hamilton's principle. The lateral displacement is assumed summation of bending, shearing and stretching functions. The elasti core is sandwiched by a couple of piezoelectric/piezomagnetic face-sheets subjected to electromagnetocmechanical loads. The work of external force is calculated with considering the in-plane mechanical, electrical and magnetic loads based on piezomagnetoelasticity relations. The critical multi field loading and natural frequency analysis are performed to investigate influence of geometric and loading parameters on the responses. A verification is performed for justification of the numerical results.

On soil-structure interaction models to simulate free vibrations and behavior under seismic loads of a RC building supported by a particular shallow foundation

  • Soelarso Soelarso;Jean-Louis Batoz;Eduard Antaluca;Fabien Lamarque
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.461-479
    • /
    • 2023
  • The paper deals with the finite element modelling of the free vibration and structural behavior of a particular four-floor reinforced concrete structure subjected to static equivalent seismic loads and supported by a shallow foundation system called SNSF (Spider Net System Footing). The two FE models are a simple 2D Matlab model and a detailed 3D model based on solid elastic elements using Altairworks (Hypermesh and Optistruct). Both models can simulate the soil structure interaction. We concentrate on the behavior of a representative cell involving two columns on five levels. The influence of the boundary conditions on the external vertical planes of the domain are duly studied. The Matlab model appears relevant for a primary estimation of frequencies and stiffness of the whole structure under vertical and lateral loads.

Axial Compressive Behavior of R/C Columns Confined with Carbon Fiber Sheets (탄소섬유쉬트로 횡구속된 RC기둥의 압축거동)

  • 신성우;이광수;심성택;송민성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.727-732
    • /
    • 2001
  • External Confinement of concrete in CFS enhances strength and ductility of concrete columns. This paper presents the test results on the study of reinforced concrete columns strengthened with carbon fiber sheets. The purpose of this research is to evaluate the CFS confinement characteristics of square reinforced concrete columns and the CFS efficiency. The tests were performed with different lateral reinforcement ratios, CFS reinforcement ratios and concrete strength. Test results were characterized according to maximum loads and lateral strain of CFS.

  • PDF

Geometrically Nonlinear Analysis of Cantilevered Cylindrical Shells under Lateral Load (탑상형 원통쉘의 휨내력에 관한 기하학적 비선형 해석)

  • 최현식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.55-62
    • /
    • 1993
  • Elastic failures of cantilevered cylindrical shells subject to lateral load are caused mainly by geometrical nonlinearlity. Geometerally nonlinear analysis is call for so as to investigate failure mechanisms. In this paper the geometericlly nonlinear analysis of cantilevered cylindrical shells under transverse load by the Rayleigh-Ritz Method is presented to examine the collapse loads and the process of cross-sectional deformations. The critical stress for relatively long cylinders have a tendency to show low level in comparison with the classical buckling stress for compression.

  • PDF

Control of Coupled Lateral Torsional Vibration of Tall Building under Dynamic Lateral Loads (동적 하중을 받는 횡-비틀림 방향이 조합된 고층건물의 진동 제어에 관한 연구)

  • 황재승;민경원;홍성목
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.28-33
    • /
    • 1995
  • 본 논문에서는 조합변형이 각각의 모드에 따라 매우 다양하게 달라질 수 있으며 각 모드의 역학적 거동에 따라 제어기의 최적 위치가 달라지는 것을 보였으며 이러한 최적의 위치를 효과적으로 파악할 수 있는 각 모드의 기하학적인 중심에 대하여 기술하였다.

  • PDF

Reliability Analysis on the Decision Method of Lateral Flow of Foundation Piles for Abutment (교대 기초말뚝의 측방유동 판정식에 관한 신뢰성 해석)

  • Ahn, Jong-Pil;Kim, Gyu-Deok;Kim, Il-Goo;Choi, Jin-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1090-1097
    • /
    • 2008
  • This study conducted the decision method of lateral flow in abutment structures founded on the soft soils and the reliability analysis on the foundation pile for abutment. On the basis of the results, this study proposed the reliability design model. Reliability analysis was conducted by applying second moment method, point estimation method, and expected total cost minimization to lateral movement index, lateral movement decision index, modified lateral movement decision index, and circular failure safety factor for the decision criteria of lateral flow. The reliability index by analysis method had a similar tendency each other. Point estimation method was found as a practical method in the aspect of convenience because it could conduct the analysis only by mean and standard deviation as well as the partial derivative on random variables was not necessary. Optimum reliability index and optimum safety according to increasing in failure factors and load ratio were analyzed and loads and resistance factors of the design criteria of optimum reliability were estimated. It presented rational design model which can consider construction level and stability and economical efficiency overall.

  • PDF

A Study on the Lateral Confinement Effects of Spiral High-Strength Concrete Columns (나선근에 의한 고강도 콘크리트 기둥부재의 횡보강효과에 관한 연구)

  • 박훈규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.547-552
    • /
    • 1998
  • Lateral pressure by circular reinforcement greatly enhances the maximum strength and ductility of spiral columns. The lateral confinement effects will be improves ductility of high-strength concrete. The major purpose of this paper is to study on the improvements of maximum strength and strain at that point of spiral concrete columns subject to axial loads. For this purpose, this study collected the other analytical results and the experimental data that has been performed by a lot of worldwide researchers and also analyzed it statistically. As the result, the theoretical equation for predict maximum strength and strain at that point was proposed. It is based on calculation of lateral confinement pressure generated by circular reinforcement, and the resulting improvements in strength and ductility of confined concrete.

  • PDF