DOI QR코드

DOI QR Code

Evolution of bone structure under axial and transverse loads

  • Received : 2005.11.18
  • Accepted : 2006.04.20
  • Published : 2006.09.10

Abstract

The evolution process of an initially homogeneous bone structure under axial and transverse loads is investigated in this paper. The external loads include axial and external lateral pressure, electric, magnetic and thermal loads. The theoretical predictions of evolution processes are made based on the adaptive elasticity formulation and coupled thermo-magneto-electro-elastic theory. The adaptive elastic body, which is a model for living bone diaphysis, is assumed to be homogeneous in its anisotropic properties and its density. The principal result of this paper is determination of the evolution process of the initially homogeneous body to a transversely inhomogeneous body under the influence of the inhomogeneous stress state.

Keywords

References

  1. Bessett, C.A., Valdes, M.G and Hemandez, E. (1982), 'Modification of fracture repair with selected pulsing electromagnetic fields', J. Bone and Joint Surgery-American Volume, 64, 888-895 https://doi.org/10.2106/00004623-198264060-00012
  2. Bur, B.B., Martin, R.B., Schaffler, M.B. and Radin, E.L. (1985), 'Bone remodeling in response to in vivo fatigue microdamage', J. Biomechanics, 18, 189 https://doi.org/10.1016/0021-9290(85)90204-0
  3. Carter, D.R. (1984), 'Mechanical loading histories and cortical bone remodeling', Calcified Tissue International. 36-S1:S19
  4. Cowin, S.C. and Firoozbakhsh, K. (1981), 'Bone remodelling of diaphysial surfaces under constant load:Theoretical predictions', J Biomechanics, 14,471-484 https://doi.org/10.1016/0021-9290(81)90097-X
  5. Cowin, S.C. and Hegedus, D.M. (1976), 'Bone remodelling I: Theory of adaptive elasticity', J Elasticity, 6, 313-326 https://doi.org/10.1007/BF00041724
  6. Cowin, S.C. and van Buskirk, W.C. (1978), 'Internal bone remodelling induced by a medullary pin', J Biomechanics, 11, 269-275 https://doi.org/10.1016/0021-9290(78)90053-2
  7. Cowin, S.C. and van Buskirk, W.C. (1979), 'Surface bone remodelling induced by a medullary pin', J. Biomechanics, 12, 269-276 https://doi.org/10.1016/0021-9290(79)90069-1
  8. Demiray, H. (1983), 'Electro-mechanical remodelling of bones', Int. J Eng. Sci., 21, 1117-1126 https://doi.org/10.1016/0020-7225(83)90051-4
  9. Fukada, E. and Yasuda, I. (1957), 'On the piezoelectric effect of bone', J. Phys. Soc. Japan, 12, 1158-1162 https://doi.org/10.1143/JPSJ.12.1158
  10. Fukada, E. and Yasuda, I. (1964), 'Piezoelectric effects in Collagen', Jap. J Appl. Phys., 3,117-121 https://doi.org/10.1143/JJAP.3.117
  11. Gao, C.F. and Noda, N. (2004), 'Thermal-induced interfacial cracking of magneto-electroelastic materials', Int.J Eng. Sci., 42, 1347-1360 https://doi.org/10.1016/j.ijengsci.2004.03.005
  12. Giordano, N. and Battisti, E. (2001), 'Effect of electromagnetic fields on bone mineral density and biochemical markers of bone turnover in osteoporosis: A single-blind, randomized pilot study', Current Therapeutic Research, 62,187-193 https://doi.org/10.1016/S0011-393X(01)80030-8
  13. Gjelsvik, A. (1973a), 'Bone remodeling and piezoelectricity - I', J Biomechanics, 6, 69-77 https://doi.org/10.1016/0021-9290(73)90039-0
  14. Gjelsvik, A. (1973b), 'Bone remodeling and piezoelectricity - II', J. Biomechanics, 6, 187 https://doi.org/10.1016/0021-9290(73)90087-0
  15. Guzelsu, N. (1978), 'A piezoelectric model for dry bone tissue', J. Biomechanics, 11,257-267 https://doi.org/10.1016/0021-9290(78)90052-0
  16. Hert, J., Sklenska, M. and Liskova, M. (1971), 'Reaction of bone to mechanical stimuli, part 5. Effect of intermittent stress on the rabbit tibia after resection of the peripheral nerves', Folia Morphologica, 19, 397
  17. Jendrucko, R, Hyman, W.A., Newell, P.H. and Chakraborty, B.K.(1976), 'Theoretical evidence for the generation of high pressure in bone cells', J. Biomechanics, 9, 87 https://doi.org/10.1016/0021-9290(76)90127-5
  18. Johnson, M.W, Williams, W.S. and Gross, D. (1980), 'Ceramic models for piezoelectricity in dry bone', J.Biomechanics, 13, 565-573 https://doi.org/10.1016/0021-9290(80)90057-3
  19. Martin, R.B. and Bur, B.B. (1982), 'A hypothetical mechanism for the stimulation of osteonal remodeling by fatigue damage', J. Biomechanics, 15, 137 https://doi.org/10.1016/S0021-9290(82)80001-8
  20. Mcleod, K.J. and Rubin, C.T. (1992), 'The effect of low-frequency electrical field on osteogenesis', J. Bone and Joint Surgery-American Volume, 74, 920-929 https://doi.org/10.2106/00004623-199274060-00014
  21. Qin, Q.H. and Ye, J.Q. (2004), 'Thermolectroelastic solutions for internal bone remodeling under axial and transverse loads', Int. J. Solids Slruct., 41,2447-2460 https://doi.org/10.1016/j.ijsolstr.2003.12.026
  22. Qin, Q.H., Qu, C.Y. and Ye, J.Q. (2005), 'Thermolectroelastic solutions for surface bone remodeling under axial and transverse loads', Biomaterials, 26, 6798-6810 https://doi.org/10.1016/j.biomaterials.2005.03.042
  23. Takakuda, K. (1993), 'A hypothetical regulation mechanism of adaptive bone remodeling (transport of growth factors by mechanical loads)', JSME Int. J, 36(4),417-424
  24. Williams, W.S. and Breger, L. (1974), 'Analysis of stress distribution and piezoelectric response in cantilever bending of bone and tendon', Ann N.Y. Acad Sci., 238,121-130 https://doi.org/10.1111/j.1749-6632.1974.tb26782.x

Cited by

  1. A theoretical study of bone remodelling under PEMF at cellular level vol.15, pp.8, 2012, https://doi.org/10.1080/10255842.2011.565752
  2. Topology optimization of bi-modulus structures using the concept of bone remodeling vol.31, pp.7, 2014, https://doi.org/10.1108/EC-05-2013-0128
  3. Exact solutions to magneto-electro-thermo-elastic fields for a cracked cylinder composite during thermal shock vol.16, pp.1, 2006, https://doi.org/10.1007/s10999-019-09456-y