Browse > Article
http://dx.doi.org/10.12989/sem.2006.24.1.019

Evolution of bone structure under axial and transverse loads  

Qu, Chuanyong (Dept. of Mechanics, Tianjin University)
Qin, Qing-Hua (Dept. of Engineering, Australian National University)
Publication Information
Structural Engineering and Mechanics / v.24, no.1, 2006 , pp. 19-29 More about this Journal
Abstract
The evolution process of an initially homogeneous bone structure under axial and transverse loads is investigated in this paper. The external loads include axial and external lateral pressure, electric, magnetic and thermal loads. The theoretical predictions of evolution processes are made based on the adaptive elasticity formulation and coupled thermo-magneto-electro-elastic theory. The adaptive elastic body, which is a model for living bone diaphysis, is assumed to be homogeneous in its anisotropic properties and its density. The principal result of this paper is determination of the evolution process of the initially homogeneous body to a transversely inhomogeneous body under the influence of the inhomogeneous stress state.
Keywords
bone remodeling; piezoelectric; piezomagnetic; biomechanics; biomaterials;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Gao, C.F. and Noda, N. (2004), 'Thermal-induced interfacial cracking of magneto-electroelastic materials', Int.J Eng. Sci., 42, 1347-1360   DOI   ScienceOn
2 Giordano, N. and Battisti, E. (2001), 'Effect of electromagnetic fields on bone mineral density and biochemical markers of bone turnover in osteoporosis: A single-blind, randomized pilot study', Current Therapeutic Research, 62,187-193   DOI   ScienceOn
3 Gjelsvik, A. (1973b), 'Bone remodeling and piezoelectricity - II', J. Biomechanics, 6, 187   DOI   ScienceOn
4 Guzelsu, N. (1978), 'A piezoelectric model for dry bone tissue', J. Biomechanics, 11,257-267   DOI   ScienceOn
5 Hert, J., Sklenska, M. and Liskova, M. (1971), 'Reaction of bone to mechanical stimuli, part 5. Effect of intermittent stress on the rabbit tibia after resection of the peripheral nerves', Folia Morphologica, 19, 397
6 Jendrucko, R, Hyman, W.A., Newell, P.H. and Chakraborty, B.K.(1976), 'Theoretical evidence for the generation of high pressure in bone cells', J. Biomechanics, 9, 87   DOI   ScienceOn
7 Johnson, M.W, Williams, W.S. and Gross, D. (1980), 'Ceramic models for piezoelectricity in dry bone', J.Biomechanics, 13, 565-573   DOI   ScienceOn
8 Martin, R.B. and Bur, B.B. (1982), 'A hypothetical mechanism for the stimulation of osteonal remodeling by fatigue damage', J. Biomechanics, 15, 137   DOI   ScienceOn
9 Qin, Q.H., Qu, C.Y. and Ye, J.Q. (2005), 'Thermolectroelastic solutions for surface bone remodeling under axial and transverse loads', Biomaterials, 26, 6798-6810   DOI   ScienceOn
10 Takakuda, K. (1993), 'A hypothetical regulation mechanism of adaptive bone remodeling (transport of growth factors by mechanical loads)', JSME Int. J, 36(4),417-424
11 Demiray, H. (1983), 'Electro-mechanical remodelling of bones', Int. J Eng. Sci., 21, 1117-1126   DOI   ScienceOn
12 Mcleod, K.J. and Rubin, C.T. (1992), 'The effect of low-frequency electrical field on osteogenesis', J. Bone and Joint Surgery-American Volume, 74, 920-929   DOI
13 Qin, Q.H. and Ye, J.Q. (2004), 'Thermolectroelastic solutions for internal bone remodeling under axial and transverse loads', Int. J. Solids Slruct., 41,2447-2460   DOI   ScienceOn
14 Cowin, S.C. and Hegedus, D.M. (1976), 'Bone remodelling I: Theory of adaptive elasticity', J Elasticity, 6, 313-326   DOI
15 Carter, D.R. (1984), 'Mechanical loading histories and cortical bone remodeling', Calcified Tissue International. 36-S1:S19
16 Fukada, E. and Yasuda, I. (1964), 'Piezoelectric effects in Collagen', Jap. J Appl. Phys., 3,117-121   DOI
17 Gjelsvik, A. (1973a), 'Bone remodeling and piezoelectricity - I', J Biomechanics, 6, 69-77   DOI   ScienceOn
18 Williams, W.S. and Breger, L. (1974), 'Analysis of stress distribution and piezoelectric response in cantilever bending of bone and tendon', Ann N.Y. Acad Sci., 238,121-130   DOI
19 Bessett, C.A., Valdes, M.G and Hemandez, E. (1982), 'Modification of fracture repair with selected pulsing electromagnetic fields', J. Bone and Joint Surgery-American Volume, 64, 888-895   DOI
20 Bur, B.B., Martin, R.B., Schaffler, M.B. and Radin, E.L. (1985), 'Bone remodeling in response to in vivo fatigue microdamage', J. Biomechanics, 18, 189   DOI   ScienceOn
21 Cowin, S.C. and Firoozbakhsh, K. (1981), 'Bone remodelling of diaphysial surfaces under constant load:Theoretical predictions', J Biomechanics, 14,471-484   DOI   ScienceOn
22 Cowin, S.C. and van Buskirk, W.C. (1978), 'Internal bone remodelling induced by a medullary pin', J Biomechanics, 11, 269-275   DOI   ScienceOn
23 Cowin, S.C. and van Buskirk, W.C. (1979), 'Surface bone remodelling induced by a medullary pin', J. Biomechanics, 12, 269-276   DOI   ScienceOn
24 Fukada, E. and Yasuda, I. (1957), 'On the piezoelectric effect of bone', J. Phys. Soc. Japan, 12, 1158-1162   DOI