• 제목/요약/키워드: lateral channel doping profile

검색결과 5건 처리시간 0.017초

드레인 전압 종속 게이트-벌크 MOSFET 캐패시턴스 추출 데이터를 사용한 측면 채널 도핑 분포 측정 (Lateral Channel Doping Profile Measurements Using Extraction Data of Drain Voltage-Dependent Gate-Bulk MOSFET Capacitance)

  • 최민권;김주영;이성현
    • 대한전자공학회논문지SD
    • /
    • 제48권10호
    • /
    • pp.62-66
    • /
    • 2011
  • 본 연구에서는 측정된 S-파라미터를 사용하여 드레인-소스 전압 Vds에 무관한 게이트-소스 overlap 캐패시턴스를 추출하고, 이를 바탕으로 deep-submicron MOSFET의 Vds 종속 게이트-벌크 캐패시턴스 곡선을 추출하는 RF 방법이 새롭게 개발 되었다. 추출된 캐패시턴스 값들을 사용한 등가회로 모델과 측정된 데이터가 잘 일치하는 것을 관찰함으로써 추출방법의 정확도가 검증되었다. 추출된 데이터로부터 overlap과 depletion 길이의 Vds 종속 곡선이 얻어졌으며, 이를 통해 drain 영역의 채널 도핑 분포를 실험적으로 측정하였다.

Device Optimization of N-Channel MOSFETs with Lateral Asymmetric Channel Doping Profiles

  • Baek, Ki-Ju;Kim, Jun-Kyu;Kim, Yeong-Seuk;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권1호
    • /
    • pp.15-19
    • /
    • 2010
  • In this paper, we discuss design considerations for an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) with a lateral asymmetric channel (LAC) doping profile. We employed a $0.35\;{\mu}m$ standard complementary MOSFET process for fabrication of the devices. The gates to the LAC doping overlap lengths were 0.5, 1.0, and $1.5\;{\mu}m$. The drain current ($I_{ON}$), transconductance ($g_m$), substrate current ($i_{SUB}$), drain to source leakage current ($i_{OFF}$), and channel-hot-electron (CHE) reliability characteristics were taken into account for optimum device design. The LAC devices with shorter overlap lengths demonstrated improved $I_{ON}$ and $g_m$ characteristics. On the other hand, the LAC devices with longer overlap lengths demonstrated improved CHE degradation and $I_{OFF}$ characteristics.

LDD MOSFET채널 전계의 특성 해석 (Characterization of Channel Electric Field in LDD MOSFET)

  • 한민구;박민형
    • 대한전기학회논문지
    • /
    • 제38권6호
    • /
    • pp.401-415
    • /
    • 1989
  • A simple but accurate analytical model for the lateral channel electric field in gate-offset structured Lightly Doped Drain MOSFET has been developed. Our model assumes Gaussian doping profile, rather than simple uniform doping, for the lightly doped region and our model can be applied to LDD structures where the junction depth of LDD is not identical to the heavily doped drain. The validity of our model has been proved by comparing our analytical results with two dimensional device simulations. Due to its simplicity, our model gives a better understanding of the mechanisms involved in reducing the electric field in the LDD MOSFET. The model shows clearly the dependencies of the lateral channel electric field on the drain and gate bias conditions and process, design parameters. Advantages of our analytical model over costly 2-D device simulations is to identify the effects of various parameters, such as oxide thickness, junction depth, gate/drain bias, the length and doping concentration of the lightly doped region, on the peak electric field that causes hot-electron pohenomena, individually. Our model can also find the optimum doping concentration of LDD which minimizes the peak electric field and hot-electron effects.

  • PDF

Preparation of Epoxy/Organoclay Nanocomposites for Electrical Insulating Material Using an Ultrasonicator

  • Park, Jae-Jun;Park, Young-Bum;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권3호
    • /
    • pp.93-97
    • /
    • 2011
  • In this paper, we discuss design considerations for an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) with a lateral asymmetric channel (LAC) doping profile. We employed a 0.35 ${\mu}M$ standard complementary MOSFET process for fabrication of the devices. The gates to the LAC doping overlap lengths were 0.5, 1.0, and 1.5 ${\mu}M$. The drain current ($I_{ON}$), transconductance ($g_m$), substrate current ($I_{SUB}$), drain to source leakage current ($I_{OFF}$), and channel-hot-electron (CHE) reliability characteristics were taken into account for optimum device design. The LAC devices with shorter overlap lengths demonstrated improved $I_{ON}$ and $g_m$ characteristics. On the other hand, the LAC devices with longer overlap lengths demonstrated improved CHE degradation and $I_{OFF}$ characteristics.

Optimizing Effective Channel Length to Minimize Short Channel Effects in Sub-50 nm Single/Double Gate SOI MOSFETs

  • Sharma, Sudhansh;Kumar, Pawan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권2호
    • /
    • pp.170-177
    • /
    • 2008
  • In the present work a methodology to minimize short channel effects (SCEs) by modulating the effective channel length is proposed to design 25 nm single and double gate-source/drain underlap MOSFETs. The analysis is based on the evaluation of the ratio of effective channel length to natural/ characteristic length. Our results show that for this ratio to be greater than 2, steeper source/drain doping gradients along with wider source/drain roll-off widths will be required for both devices. In order to enhance short channel immunity, the ratio of source/drain roll-off width to lateral straggle should be greater than 2 for a wide range of source/drain doping gradients.