• 제목/요약/키워드: laser wavelength

검색결과 1,078건 처리시간 0.029초

All-fiber Tm-Ho Codoped Laser Operating at 1700 nm

  • Park, Jaedeok;Ryu, Siheon;Yeom, Dong-Il
    • Current Optics and Photonics
    • /
    • 제2권4호
    • /
    • pp.356-360
    • /
    • 2018
  • We demonstrate continuous-wave operation of an all-fiber thulium-holmium codoped laser operating at a wavelength of 1706.3 nm. To realize laser operation in the short-wavelength region of the emission-band edge of thulium in silica fiber, we employ fiber Bragg gratings having resonant reflection at a wavelength around 1700 nm as a wavelength-selective mirror in an all-fiber cavity scheme. We first examine the performance of the laser by adjusting the central wavelength of the in-band pump source. Although a pump source possessing a longer wavelength is observed to provide reduced laser threshold power and increased slope efficiency, because of the characteristics of spectral response in the gain fiber, we find that the optimal pump wavelength is 1565 nm to obtain maximum laser output power for a given system. We further explore the properties of the laser by varying the fiber gain length from 1 m to 1.4 m, for the purpose of power scaling. It is revealed that the laser shows optimal performance in terms of output power and slope efficiency at a gain length of 1.3 m, where we obtain a maximum output power of 249 mW for an applied pump power of 2.1 W. A maximum slope efficiency is also estimated to be 23% under these conditions.

SS-OCT용 파장 스위핑 레이저를 위한 스위핑 중심 세팅 자동화 (Sweeping Center Setting Automation for Wavelength Swept Laser used in SS-OCT)

  • 엄진섭
    • 센서학회지
    • /
    • 제26권5호
    • /
    • pp.324-330
    • /
    • 2017
  • In this paper, the automation of sweeping center setting for wavelength swept laser used in SS-OCT has implemented. For 3 regions where the initial FFP-TF pass wavelength can be located, each different DC voltage pattern is applied to FFP-TF. Through its performance test to the laser, fast and exact setting to sweeping central wavelength, flat sweeping with ${\pm}0.5dB$ fluctuation range, and 10 mW average optical power were obtained. This shows that the realized automatic setting process can replace an inconvenient manual setting operation used for current wavelength swept laser. Additionally it cuts costs for optical spectrum analyzer necessary to laser spectrum monitoring.

다파장 레이저빔을 이용한 알루미늄 합금의 응접특성 (Weldability of aluminum alloys by multi-wavelength laser beam)

  • 김종도;김정묵
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.567-574
    • /
    • 2007
  • Aluminum and aluminum alloys have high rate of lightness, recycling property and excellent specific strength. Fields using them have been widening because they ould satisfy both energy reduction and high efficiency in manufactures production. But they have many problems on welding due to high thermal conductivity and reflectivity, so the study to solve these problems ate proceeding actively around the world. This study was purposed to improve weldability and spread application range for aluminium alloys by using the unique property of aluminium which absorb high energy around $800{\mu}m$ wavelength and the higher temperature, the mote absorbtion of laser beam on preheating by multi-wavelength laser beam(pulsed Nd:YAG laser + diode laser with $808{\mu}m$ wavelength). The favorable mechanical properties were acquired by the test results of strength, hardness and leak of weld metal which had reduced its defect like crack and so on.

An Asymmetric Sampled Grating Laser and Its Application to Multi-Wavelength Laser Array

  • Ryu, Sang-Wan;Kim, Je-Ha
    • ETRI Journal
    • /
    • 제24권5호
    • /
    • pp.341-348
    • /
    • 2002
  • We propose an asymmetric sampled grating laser and a multi-wavelength laser array associated with it. Asymmetric sampling periods combined with an index shifter make it possible to use first order reflection for lasing operations. With the structure of our design, we achieved a simple fabrication procedure as well as a high yield without using complex and time-consuming e-beam lithography for multi-period gratings. We analyzed the effect of mirror coating by numerical analysis to improve single mode and power extraction performance. By using high reflection-antireflection coatings, we obtained high power extraction efficiency without degradation of the single mode property. For the multi-wavelength laser array, to gain wavelength control, we varied the sampling periods from one laser to an adjacent laser across the array. With this approach, we showed the feasibility of an array of up to 30 channels with 100 GHz wavelength spacing.

  • PDF

폴리머 도파로 브라그 격자를 이용한 단일 파장 가변 광섬유 레이저의 출력 특성 연구 (Characterization of a Wavelength-Tunable Fiber Laser Based on a Polymer Waveguide Bragg Grating Wavelength Filter)

  • 최병권;변종현;서준규;이학규;전민용
    • 한국광학회지
    • /
    • 제26권6호
    • /
    • pp.306-311
    • /
    • 2015
  • 본 논문은 폴리머 광 도파로 기반의 브라그 격자(Polymer waveguide Bragg grating: PWBG) 파장 필터를 광섬유 레이저 공진기 내부에 삽입하여 단일 파장 가변 레이저를 구현하고, 주위 온도 및 공진기 내부의 편광 상태의 변화에 대한 출력 특성을 연구한 결과에 대해 보고한다. 레이저 공진기 내부에 있는 PWBG 파장 필터에 0 mW에서 100 mW의 전력을 인가해 주었을 때 레이저에서 발진하는 파장은 1548.24 nm에서 1531.95 nm까지 약 16.29 nm를 가변할 수 있었으며, 이 때 slope efficiency는 약 -0.16 nm/mW였다. 레이저 공진기 안의 편광을 적절하게 조절하면 모든 파장 가변 범위에서 35 dB 이상의 SMSR(side mode suppression ratio)을 얻을 수 있었다. 레이저 공진기 외부의 온도가 변화하면 발진하는 파장이 변하는 것을 알 수 있었다. 따라서 PWBG 파장 필터를 이용하여 안정된 파장 가변 레이저를 구현하기 위해서는 PWBG 파장 필터의 온도 안정화가 필요하며, 또한 편광에 대한 영향을 최소화하기 위해서는 레이저 공진기를 편광유지 광섬유로 구성해야 한다.

SOA 2개의 병렬연결을 통한 파장 가변 레이저 개발 (Development of Wavelength Swept Laser by using the two SOAs parallel configuration)

  • 김훈섭;엄진섭
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.235-238
    • /
    • 2008
  • In this paper, we have developed wavelength swept laser system for the swept source optical coherence tomography(SS-OCT). A laser is constructed by using the two SOAs parallel configuration, fiber Fabry-Perot tunable filter(FFP-TF). The wavelength sweeps are repetitively generated with the repetition period of 50Hz. The wavelength tuning range of the laser is more than FWHM of 80nm centered at the wavelength of 1310nm and the line-width of the source is 0.12 nm.

  • PDF

Compact, Wavelength-selectable, Energy-ratio Variable Nd:YAG Laser at Mid-ultraviolet for Chemical Warfare Agent Detection

  • Kim, Jae-Ihn;Cho, Ki Ho;Lee, Jae-Hwan;Ha, Yeon-Chul
    • Current Optics and Photonics
    • /
    • 제3권3호
    • /
    • pp.243-247
    • /
    • 2019
  • We have developed a compact, wavelength-selectable, Q-switched Nd:YAG laser at mid ultraviolet for chemical warfare agent detection. The fundamental wave at 1064 nm is delivered by a pulsed solid state laser incorporating with a square-type Nd:YAG rod in a resonator closed by two crossed Porro prisms for environmental reliability. The output energy at 213 nm ($5{\omega}$) and 266 nm ($4{\omega}$) by ${\chi}^{(2)}$ process in the sequentially disposed BBO crystals are measured to be 6.8 mJ and 15.1 mJ, respectively. The output wavelength is selected for $5{\omega}$ and $4{\omega}$ by a motorized wavelength switch. The energy ratio of the $5{\omega}$ to the $4{\omega}$ is varied from 0.05 to 0.85 by controlling the phase matching temperature of the nonlinear crystal for sum-frequency generation without change of the output pulse parameters.

고속 파장가변 모드잠김 레이저의 제작 및 출력특성 (Fabrication and Output Characteristics of a High-Speed Wavelength Swept Mode-Locked Laser)

  • 이응제;김용평
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1117-1121
    • /
    • 2007
  • We demonstrate a wavelength swept mode-locked ring laser for the frequency domain optical coherence tomography(FD OCT). A laser is constructed by using a semiconductor optical amplifier, fiber Fabry-Perot tunable filter and 2.6 km fiber ring cavity. Mode-locking is implemented by 2.6 km fiber ring cavity for matching the fundamental or harmonic of cavity roundtrip time to a sweep period. The wavelength sweeps are repetitively generated with the repetition period of 77.2 kHz which is the parallel resonance frequency of Fabry-Perot tunable filter for the low driving current consumption of the fiber Fabry-Perot tunable filter. The wavelength tuning range of the laser is more than FWHM of 61 nm centered at the wavelength of 1320 nm and the linewidth of the source is $0.014{\pm}0.002$ nm.

WDM을 위한 Fabry-perot 필터의 로킹 시스템 (The wavelength locking system of the fabry-perot filter for WDM)

  • 송준용;이호준
    • 전자공학회논문지D
    • /
    • 제34D권6호
    • /
    • pp.58-64
    • /
    • 1997
  • The wavelengt lockin gsystem of the optical fabry-perot filter theoretially derived and experimentally realized by using the ithering method in order to compensate the laser wavelength drift increasing the BER of the WDM system. The deviation between the laser wavelength and the optical filter center wavelength is compensated by applying a suitable voltage to the PZT. Accordingly, the laser wavelength selected by the fabry-perot filter always maintains the condition of maximum transmission powr. A wavelength locking system has been demonstrated using a fiber fabry-perot filter with a free spectral range of 80nm and an FWH of 1nm. The voltages of the sine wave generated for dithering was 20mV and 10mV, the frequency was 2kHz and center wavelength of the tunable laser was 1550nm. In this paper, the locking system have 20ms of locking time and 2nm of locking range.

  • PDF

펄스레이저 증착법의 레이저 파장변환에 의한 실리콘 나노결정의 발광 특성 연구 (Study on the Luminescence of Si Nanocrystallites on Si Substrate fabricated by Changing the Wavelength of Pulsed Laser Deposition)

  • 김종훈;전경아;최진백;이상렬
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권4호
    • /
    • pp.169-172
    • /
    • 2003
  • Silicon nanocrystalline thin films on p-type (100) silicon substrate have been fabricated by pulsed laser deposition technique using a Nd:YAG laser with the wavelength of 355, 532, and 1064 nm. The base vacuum in the chamber was down to $10^-6$ Torr and the laser energy densities were 1.0~3.0 J/$\textrm{cm}^2$ After deposition, silicon nanocrystalline thin films have been annealed at nitrogen gas. Strong Blue and green luminescence from silicon nanocrystalline thin films have been observed at room temperature by photoluminescence and its peak energies shift to green when the wavelength is increased from 355 to 1064 nm.