Browse > Article
http://dx.doi.org/10.3807/COPP.2019.3.3.243

Compact, Wavelength-selectable, Energy-ratio Variable Nd:YAG Laser at Mid-ultraviolet for Chemical Warfare Agent Detection  

Kim, Jae-Ihn (Laser and Sensor System Team, Hanwha Corporation)
Cho, Ki Ho (Laser and Sensor System Team, Hanwha Corporation)
Lee, Jae-Hwan (Agency for Defense Development)
Ha, Yeon-Chul (Agency for Defense Development)
Publication Information
Current Optics and Photonics / v.3, no.3, 2019 , pp. 243-247 More about this Journal
Abstract
We have developed a compact, wavelength-selectable, Q-switched Nd:YAG laser at mid ultraviolet for chemical warfare agent detection. The fundamental wave at 1064 nm is delivered by a pulsed solid state laser incorporating with a square-type Nd:YAG rod in a resonator closed by two crossed Porro prisms for environmental reliability. The output energy at 213 nm ($5{\omega}$) and 266 nm ($4{\omega}$) by ${\chi}^{(2)}$ process in the sequentially disposed BBO crystals are measured to be 6.8 mJ and 15.1 mJ, respectively. The output wavelength is selected for $5{\omega}$ and $4{\omega}$ by a motorized wavelength switch. The energy ratio of the $5{\omega}$ to the $4{\omega}$ is varied from 0.05 to 0.85 by controlling the phase matching temperature of the nonlinear crystal for sum-frequency generation without change of the output pulse parameters.
Keywords
Ultra-violet; Raman spectroscopy; Q-switched Nd:YAG laser; Wavelength selectable;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. B. Coyle, R. B. Kay, P. R. Stysley, and D. Poulios, "Efficient, reliable, long-lifetime, diode-pumped Nd:YAG laser for space-based vegetation topographical altimetry," Appl. Opt. 43, 5236-5242 (2004).   DOI
2 D. Carr and G. Tuell, "Estimating field-of-view loss in bathymetric lidar: application to large-scale simulations," Appl. Opt. 53, 4716-4721 (2014).   DOI
3 B. Tan, "Deep microhole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses," J. Micromech. Microeng. 16, 1-4 (2006).   DOI
4 A. Bertsch, H. Lorenz, and P. Renaud, "3d microfabrication by combining microstereolithography and thick resist UV lithography," Sens. Actuators, A 73, 14-23 (1999).   DOI
5 A. Okamoto, H. Kuniyasu, and T. Hattori, "Detection of 30-40 nm particles on bulk -silicon and SOI wafers using deep UV laser scattering," IEEE Trans. Semicond. Manuf. 19, 372-380 (2006).   DOI
6 R. T. Rewick, M. L. Schumacher, and D. L. Haynes, "UV absorption spectra of chemical agents and simulants," Appl. Spectrosc. 40, 152-156 (1986).   DOI
7 S. Jin, Z. Feng, F. Fan, and C. Li, "UV Raman spectroscopic characterization of catalysts and catalytic active sites," Catal. Lett. 145, 468-481 (2015).   DOI
8 S. D. Christesen, "Raman cross sections of chemical agents and simulants," Appl. Spectrosc. 42, 318-321 (1988).   DOI
9 V. Pajcini, C. H. Munro, R. W. Bormett, R. E. Witkowski, and S. A. Asher, "UV Raman microspectroscopy: Spectral and spatial selectivity with sensitivity and simplicity," Appl. Spectrosc. 51, 81-86 (1997).   DOI
10 R. Bhartia, W. F. Hugb, and R. D. Reid, "Improved sensing using simultaneous deep UV Raman and fluorescence detection," Proc. SPIE 8358, 83581A (2012).
11 Y. C. Ha, J. H. Lee, Y. J. Koh, S. K. Lee, and Y. K. Kim, "Development of an ultraviolet Raman spectrometer for standoff detection of chemicals," Curr. Opt. Photon. 1, 247-251 (2017).   DOI
12 S. D. Christesen, J. P. Jones, J. M. Lochner, and A. M. Hyre, "Ultraviolet raman spectra and cross-sections of the G-series nerve agents," Appl. Spectrosc. 62, 1078-1083 (2008).   DOI
13 F. Kullander, L. Landstrom, H. Lunde, A. Mohammed, G. Olofsson, and P. Wasterby, "Measurements of Raman scattering in the middle ultraviolet band from persistent chemical warfare agents," Proc. SPIE 9073, 90730C (2014).
14 J. Kim, D. Haubrich, and D. Meschede, "Efficient sub-Doppler laser cooling of an indium atomic beam," Opt. Express 17, 21216-21221 (2009).   DOI
15 A. Rapaport, L. Weichman, B. Brickeen, S. Green, and M. Bass, "Laser resonator design using optical ray tracing software: comparison with simple analytical models and experimental results," IEEE J. Quantum Electron. 37, 1041-1048 (2001).
16 W. R. Bosenberg, L. K. Cheng, and C. L. Tang, "Ultraviolet optical parametric oscillation in ${\beta}-BaB_2O_4$," Appl. Phys. Lett. 54, 13-15 (1989).   DOI
17 R. B. Bapna, C. S. Rao, and K. Dasgupta, "Low-threshold operation of a 355-nm pumped nanosecond ${\beta}-BaB_2O_4$ optical parametric oscillator," Opt. Laser Technol. 40, 832-837 (2008).   DOI
18 F. Kullander, L. Landstrom, H. Lunde, and P. Wasterby, "Experimental examination of ultraviolet Raman cross sections of chemical warfare agent simulants," Proc. SPIE 9455, 94550S (2015).
19 M. K. Chun and E. A. Teppo, "Laser resonator: an electrooptically Q-switched Porro prism device," Appl. Opt. 15, 1942-1946 (1976).   DOI
20 I. Singh, A. Kumar, and O. P. Nijhawan, "Design of a high-power Nd:YAG Q-switched laser cavity," Appl. Opt. 34, 3349-3351 (1995).   DOI
21 K. Lee, Y. Yoon, J. Lee, K. Cho, J. Kim, and J. Cho, "Linearly aligned multiple pumping apparatus for solid-state solid lasers," KR Patent 10-2018-0106942 (2018).
22 Y. Yoon, K. Cho, K. Lee, J. Yoo, J. Lee, J. Kim, S. Lee, and P. Jung, "Laser gain medium assembly solid-state solid lasers and assembling method thereof," KR Patent 10-2019-0001547 (2019).
23 Y. Ha, J. Lee, Y. Kang, K. Cho, J. Kim, and J. Cho, "High-order harmonic wave generation apparatus capable of selecting wavelength," U.S. Patent US9620927B2 (2017).
24 W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1996).
25 SNLO Program, http://www.as-photonics.com/snlo.
26 A. V. Smith, W. J. Alford, T. D. Raymond, and M. S. Bowers, "Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator," J. Opt. Soc. Am. B 12, 2253-2267 (1995).   DOI
27 J. P. Phillips, S. Banerjee, J. Smith, M. Fitton, T. Davenne, K. Ertel, P. Mason, T. Butcher, M. Vido, J. Greenhalgh, C. Edwards, C. H. Gomez, and J. Collier, "High energy, high repetition rate, second harmonic generation in large aperture DKDP, YCOB, and LBO crystals," Opt. Express 24, 19682-19694 (2016).   DOI
28 A. V. Smith and M. Bowers, "Phase distortions in sum- and difference-frequency mixing in crystals," J. Opt. Soc. Am. B 12, 49-57 (1995).   DOI