• Title/Summary/Keyword: laser printer

Search Result 125, Processing Time 0.023 seconds

Design of 3D Printer Based on SLA Using LSU and Test of Scanning Mechanism (LSU를 이용한 SLA 방식의 3D프린터 설계 및 스캐닝 기구부 동작 테스트)

  • Jang, Min;Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1225-1230
    • /
    • 2017
  • 3D printers have been growing mainly in industrial use, but the recent growth of the personal 3D printer market advanced through economic effects and cost reduction due to technological development. However, current 3D personal printers are very low in customer satisfaction on the limitations of molding speed, size, and precision. In this paper, we propose SLA 3D printer using LSU to overcome the technical limitation of personal 3D printer. In order to verify the operation of the scanning mechanism which is responsible for core functions, the movement of molding board using stepping motor and laser output test was conducted. These tests ensure that the laser was operating and control well was confirmed that a certain point is output to the X-axis by means of a laser module and a polygon mirror. 3D printers which are proposed to improve the accuracy and manufacturing speed is expected to replace the traditional low-budget 3D printer.

The Test of Mechanism Operation for 3D Printer Using Polygon Mirror (폴리곤 미러를 이용한 3D 프린터 기구부 동작 테스트)

  • Kwon, Dong-hyun;Heo, Sung-uk;Lim, Ji-yong;Oh, Am-suk;Kim, Wan-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.735-737
    • /
    • 2016
  • In this paper, we conducted a test of the 3D printer injection method and LSU (Laser Scanning Unit) feature a fusion of the polygon mirror scanning system that is the core mechanism operation for 3D printers for office laser printers SLA system. These tests ensure that the laser was operating and control well was confirmed that a certain point is output to the X-axis by means of a laser module and a polygon mirror. And confirmed after the F-theta lens is incident on the fixed laser power of the beam, and correction according to the correction beam on the mirror reflection was confirmed jineunji the focus according to the Z-axis upper plate.

  • PDF

A Study on 3D Printer Using Polygon Mirror (폴리곤 미러를 이용한 3D 프린터에 관한 연구)

  • Kwon, Dong-hyun;Heo, Sung-uk;Lim, Ji-yong;Oh, Am-suk;Kim, Wan-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.142-144
    • /
    • 2016
  • Recent promising technologies of the manufacturing sector interest, and the interest in 3D printing that is expected to cause a huge ripple effect rapidly, and various types of products advertised in accordance with the falling price of 3D printers is spreading. However, the personal 3D printers that are currently being advertised is used for Injection output of the simple type that does not require a high processing precision in accordance with the limitation of technical performance, and consumer satisfaction is very low. In this paper, we propose a 3D printer, 3D precision to overcome existing limitations in the way the printer's high SLA 3D printer that combines injection method and the LSU (Laser Scanning Unit) in the office laser printer polygon mirror scanning method. 3D printers which are proposed to improve the accuracy and manufacturing speed is expected to replace the existing entry-level 3D printer.

  • PDF

Evaluation for Warming-up Performance and Fusing Quality through Heat Transfer Simulations of Laser Printer Fusing System (레이저 프린터 정착 시스템의 열전달 해석을 통한 승온 성능 및 정착성 예측)

  • Lee, Jin-sung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2231-2235
    • /
    • 2008
  • Thermal performance of fusing system in laser printer is determined by FPOT(First print out time) required and toner fusing quality. FPOT is influenced by the thermal resistance of fusing system between heat source and nip region. Also FPOT is depended by the heat source power and toner fusing temperature. The fusing quality of toner is decided by the temperature, pressure and duration time in nip region. In this study, I have performed thermal analysis for the toner fusing system. Computational simulation has been used to understand the effect of heat source power and printing speed etc. on the temperature distribution of the fusing system. Also in order to predict fusing quality, numerical simulation of the process that paper is continuously supplied to the nip regions were performed. In comparison with the experimental results of the fusing quality vs transferred calory to the toner layer, I could evaluate various fusing condition parameters effected on the thermal performance.

  • PDF

A Study on the Fusing Temperature Distribution for Laser Printer Toner by Using Numerical Computation

  • Choi, Yoon-Hwan;Lee, Yeon-Won;Kim, Dong-Kyun;Doh, Deog-Hee
    • International Journal of Safety
    • /
    • v.8 no.2
    • /
    • pp.5-8
    • /
    • 2009
  • Fusing process of laser printer is the step to fuse toner on the paper and it has a great effect on fast printing speed, decrease in waiting time and improvement of printing quality. In order to improve the quality of fusing, a study on the fusion region is required. Recently, various researches are progressing in this field. In this study, the research about the temperature distribution of fusing region is performed through numerical analysis because fusing region is one of the important factors influencing fusing quality. According to results, it is ascertained that the temperature of fusing region is relative to velocity of the paper under print and has a regular distribution to width direction of the paper.

Color Laser Printer Forensics through Wiener Filter and Gray Level Co-occurrence Matrix (위너 필터와 명암도 동시발생 행렬을 통한 컬러 레이저프린터 포렌식 기술)

  • Lee, Hae-Yeoun;Baek, Ji-Yeoun;Kong, Seung-Gyu;Lee, Heung-Su;Choi, Jung-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.8
    • /
    • pp.599-610
    • /
    • 2010
  • Color laser printers are nowadays abused to print or forge official documents and bills. Identifying color laser printers will be a step for media forensics. This paper presents a new method to identify color laser printers with printed color images. Since different printer companies use their own printing process, each of printed papers from different printers has a little different invisible noise. After the wiener-filter is used to analyze the invisible noises from each printer, we extract some features from these noises by calculating a gray level co-occurrence matrix. Then, these features are applied to train and classify the support vector machine for identifying the color laser printer. In the experiment, we use total 2,597 images from 7 color laser printers. The results prove that the presented identification method performs well using the noise features of color printed images.

Design of Connectivity Test Circuit for a Direct Printing Image Drum

  • Jung, Seung-Min
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.43-46
    • /
    • 2008
  • This paper proposes an advanced test circuit for detecting the connectivity between a drum ring of laser printer and PCB. The detection circuit of charge sharing is proposed, which minimizes the influences of internal parasitic capacitances. The test circuit is composed of precharge circuit, analog comparator, level shifter. Its functional operation is verified using $0.6{\mu}m$ 3.3V/40V CMOS process parameter by HSPICE. Access time is100ns. Layout of the drum contact test circuit is $465{\mu}m\;{\times}\;117{\mu}m$.

Automated Production System for Manufacturing the Doctor Blades of Laser Printers (레이저프린터용 닥터 블레이드 생산 자동화)

  • Jun, Sung-Hoon;Lee, Eung-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.633-638
    • /
    • 2012
  • The doctor blade is a core part of a laser printer and directly influences the printing quality. The main specifications for doctor blades ate for them to be precise and durable. It is necessary to study an automatic production system for doctor blades in order to obtain high-efficient manufacturing processes. In this paper, the technology and the design of the automatic production line has for manufacturing doctor blades has been researched. The automated manufacturing process consists of five steps, which are the supplying of raw material, shearing, bending, bracket supplying, and the laser-spot welding process. The proposed automatic manufacturing system allowed for faster and more reliable production of doctor blades.

Development of Hybrid Induction Heating System for Laser Printer

  • Chae Young-Min;Kwon Joong-Gi;Han Sang-Yong;Sung Hwan-Ho
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.178-185
    • /
    • 2006
  • Recently, the demand for the development of high quality and high-speed laser printers and efficient power utilization has required. Among complicated electro-mechanic devices in laser printers, the toner-fusing unit consumes above 90[%] of all electrical energy needed for printing devices. Therefore, the development of a more effective energy-saving toner fusing process becomes a significant task in great demand. Generally, there are several ways to implement a fusing unit. Among them this paper presents a new induction heating method. The proposed induction heating method enables the increase of coupling coefficient between heating coil and heat roller which also increases total energy transfer efficiency. Therefore, the proposed IH (Induction Heating) inverter system provides very fast W.U.T. (Warm UP Time) as well as higher efficiency. Through experimental results, the proposed control system is verified.