• Title/Summary/Keyword: large scale systems

Search Result 1,841, Processing Time 0.032 seconds

Robust Decentralized Stabilization of Large-Scale Time-Delayed Linear Systems with Uncertainties via Sliding Mode Control (슬라이딩 모드 제어에 의한 불확정성을 가진 대규모 시간지연 선형 계통의 강인 분산 안정화)

  • 박장환;유정웅
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.139-144
    • /
    • 1999
  • The present paper is concerned with the robust decentralized stabilization problem of large-scale systems with time delays in the interconnections using sliding mode control. Based on Lyapunov stability theorem and H$_{\infty}$ theory, an existence condition of the sliding mode and a robust decentralized sliding mode controller are newly derived for large-scale systems under mismatched uncertainties. Finally, a numerical example is given to verify the validity of the results developed in this paper.

  • PDF

Decentralized Adaptive Control for Nonlinear Systems with Time-Delayed Interconnections: Intelligent Approach (시간 지연 상호 연계를 가진 비선형 시스템의 분산 적응 제어: 지능적인 접근법)

  • Yoo, Sung-Jin;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.413-419
    • /
    • 2009
  • A decentralized adaptive control method is proposed for large-scale systems with unknown time-delayed nonlinear interconnections unmatched in control inputs. It is assumed that the time-delayed interaction terms are bounded by unknown nonlinear bounding functions. The nonlinear bounding functions and uncertain nonlinear functions of large-scale systems are compensated by the function approximation technique using neural networks. The dynamic surface control method is extended to design the proposed memoryless local controller for each subsystem of uncertain nonlinear large-scale time delay systems. Therefore, although the interconnected systems consist of a large number of subsystems, the proposed controller can be designed simply. We prove that all the signals in the total closed-loop system are semiglobally uniformly bounded and the control errors converge to an adjustable neighborhood of the origin. Finally, an example is given to demonstrate the effectiveness and applicability of the proposed scheme.

Optimal Control of Large-Scale Dynamic Systems using Parallel Processing (병렬처리를 이용한 대규모 동적 시스템의 최적제어)

  • Park, Ki-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.403-410
    • /
    • 1999
  • In this study, a parallel algorithm has been developed that can quickly solve the optiaml control problem of large-scale dynamic systems. The algorithm adopts the sequential quadratic programming methods and achieves domain decomposition-type parallelism in computing sensitivities for search direction computation. A silicon wafer thermal process problem has been solved using the algorithm, and a parallel efficiency of 45% has been achieved with 16 processors. Practical methods have also been investigated in this study as a way to further speed up the computation time.

  • PDF

State feedback optimal control of large-scale discrete-time systems with time-delays (시간지연이 있는 대규모 이산시간 시스템의 상태궤환 최적제어)

  • 김경연;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.219-224
    • /
    • 1988
  • A decentralised computational procedure is proposed for the optimal feedback gain matrix of large-scale discrete-time systems with time-delays. The constant feedback gain matrix is computed from the optimal state and input trajectries obtained hierarchically by the interaction prediction method. All the calculation in this approach are done off-line. The resulting gains are optimal for all the initial conditions. The interaction prediction method is applied to time-delay large-scale systems with general structures by extending the dimensions of coupling matices. A numerical exampie illustrates the algorithm.

  • PDF

Real-time Object Recognition with Pose Initialization for Large-scale Standalone Mobile Augmented Reality

  • Lee, Suwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4098-4116
    • /
    • 2020
  • Mobile devices such as smartphones are very attractive targets for augmented reality (AR) services, but their limited resources make it difficult to increase the number of objects to be recognized. When the recognition process is scaled to a large number of objects, it typically requires significant computation time and memory. Therefore, most large-scale mobile AR systems rely on a server to outsource recognition process to a high-performance PC, but this limits the scenarios available in the AR services. As a part of realizing large-scale standalone mobile AR, this paper presents a solution to the problem of accuracy, memory, and speed for large-scale object recognition. To this end, we design our own basic feature and realize spatial locality, selective feature extraction, rough pose estimation, and selective feature matching. Experiments are performed to verify the appropriateness of the proposed method for realizing large-scale standalone mobile AR in terms of efficiency and accuracy.

Extension and Simplification of Inverse LQ Regulator of Large Scale Systems by Decentralized Control

  • Kubo, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.26-30
    • /
    • 2005
  • An LMI based method to construct a decentralized control law for large scale systems is discussed. It is extended to assure the stability not only of the overall system but also of each subsystem without interconnection. Then, it is simplified to have local feedback loops only for some selected subsystems.

  • PDF

Robust Non-fragile Decentralized Controller Design for Uncertain Large-Scale Interconnected Systems

  • Park, Ju-H.
    • Journal of KIEE
    • /
    • v.11 no.1
    • /
    • pp.8-13
    • /
    • 2001
  • In this brief, the design method of robust non-fragile decentralized controllers for uncertain large-scale interconnected systems is proposed. Based on Lyapunov second method, a sufficient condition for asymtotic stability is derived in terms of a linear matrix inequality (LMI), and the measure of non-fragility in controller is presented. The solutions of the LMI can be easily obtained using efficient convex optimization techniques. A numerical example is given to illustrate the proposed method.

  • PDF

Decentralized energy market-based structural control

  • Lynch, Jerome Peter;Law, Kincho H.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.557-572
    • /
    • 2004
  • Control systems are used to limit structural lateral deflections during large external loads such as winds and earthquakes. Most recently, the semi-active control approach has grown in popularity due to inexpensive control devices that consume little power. As a result, recently designed control systems have employed many semi-active control devices for the control of a structure. In the future, it is envisioned that structural control systems will be large-scale systems defined by high actuation and sensor densities. Decentralized control approaches have been used to control large-scale systems that are too complex for a traditional centralized approach, such as linear quadratic regulation (LQR). This paper describes the derivation of energy market-based control (EMBC), a decentralized approach that models the structural control system as a competitive marketplace. The interaction of free-market buyers and sellers result in an optimal allocation of limited control system resources such as control energy. The Kajima-Shizuoka Building and a 20-story benchmark structure are selected as illustrative examples to be used for comparison of the EMBC and centralized LQR approaches.

Development of Pre- and Post-processing System for Supercomputing-based Large-scale Structural Analysis (슈퍼컴퓨팅 기반의 대규모 구조해석을 위한 전/후처리 시스템 개발)

  • Kim, Jae-Sung;Lee, Sang-Min;Lee, Jae-Yeol;Jeong, Hee-Seok;Lee, Seung-Min
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.2
    • /
    • pp.123-131
    • /
    • 2012
  • The requirements for computational resources to perform the structural analysis are increasing rapidly. The size of the current analysis problems that are required from practical industry is typically large-scale with more than millions degrees of freedom (DOFs). These large-scale analysis problems result in the requirements of high-performance analysis codes as well as hardware systems such as supercomputer systems or cluster systems. In this paper, the pre- and post-processing system for supercomputing based large-scale structural analysis is presented. The proposed system has 3-tier architecture and three main components; geometry viewer, pre-/post-processor and supercomputing manager. To analyze large-scale problems, the ADVENTURE solid solver was adopted as a general-purpose finite element solver and the supercomputer named 'tachyon' was adopted as a parallel computational platform. The problem solving performance and scalability of this structural analysis system is demonstrated by illustrative examples with different sizes of degrees of freedom.

H_ Fault Detection Observer Design for Large Scale Time-Invariant Systems (대규모 선형시불변 시스템을 위한 H_ 고장검출 관측기 설계)

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.818-822
    • /
    • 2009
  • In this paper, we consider a decentralized observer design problem for fault detection in large-scaled linear time-invariant systems. Since the fault detection residual is desired to be sensitive on the fault, we use the H_ index performance criterion. Sufficient conditions for the existence of such an observer is presented in terms of linear matrix inequalities. Simulation results show the effectiveness of the proposed method.