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Abstract: An LMI based method to construct a decentralized control law for large scale systems is discussed. It is extended

to assure the stability not only of the overall system but also of each subsystem without interconnection. Then, it is simplified

to have local feedback loops only for some selected subsystems.
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1. Introduction
Decentralized control is known to be a practical way to sta-

bilize a large scale system which consists of multiple sub-

systems. Geromel and Bernussou proposed a method to ob-

tain the optimal decentralized control via the mathematical

programming[1], [2]. Ikeda and Šiljak constructed a linear

quadratic (LQ) regulator of each subsystem, and modified

the parameters to make the overall closed loop system an

LQ regulator[3], [4].

Recently, the present author proposed a method to construct

a decentralized control law for large scale systems[5]. The

feedback gain was calculated with a solution of linear matrix

inequalities (LMIs). The resulting closed loop system be-

longed to a class of LQ regulators, so it was assured to have

the good robustness properties [6], [7]. The method pro-

posed in [5] assured only the stability of the overall closed

loop system.

In this paper, firstly, an extended method, which assures the

stability not only of the overall system but also of each sub-

system without interconnection, of the method presented in

[5] is proposed. The LMIs with some extra inequalities cor-

responding to the stability of each subsystem are solved to

obtain the decentralized feedback gain. Next, the simplifi-

cation of the control structure is considered. In the method

in [5], all subsystems were treated equally, but in practice,

it is not necessary to control all subsystems. So, a method

to reduce the number of feedback loops is proposed. In this

method, only some selected subsystems are controlled. Sub-

systems not to be controlled are assumed to have no input

channels, that is, the input matrices are forced to be zero

matrices, and decentralized feedback gain is calculated. If

the decentralized control stabilizing the overall closed loop

system does exist, then it means that it is not necessary to

control the subsystems of zero input matrices. So subsystems

are divided into two groups: one group to be controlled and

the other group not to be controlled. There may be var-

ious combinations of controlled and not controlled groups.

One way to find the optimal set among them is to introduce

another cost function, which is the summation of the costs

defined to each decentralized controller. For some of the se-

lections, the decentralized controller may not be found. For

the other of the selections, it may be found. Among the latter

selections, we should choose the set of controlled subsystems

to minimize the newly introduced cost function. Even some

of the subsystems are not controlled, the resulting overall

closed loop system is still stable and belongs to a class of LQ

regulators, so it is assured to have good robustness proper-

ties.

2. Preliminary Results
Let us consider a large scale system consists of N intercon-

nected subsystems described by

ẋi(t) =

N∑
j=1

Aijxj(t) + Biui(t) (i = 1, 2, · · · , N) (1)

xi(0) = xi0 (i = 1, 2, · · · , N)

where xi(t) ∈ Rni is the state of the i-th subsystem, ui(t) ∈
Rmi is the input of the i-th subsystem, and Aij ∈ Rni×nj ,

Bi ∈ Rni×mi are constant matrices. Aij(i 6= j) denotes the

interconnection from the j-th subsystem to the i-th subsys-

tem. xi0 is the initial state of the i-th subsystem. The overall

system consists of subsystems (1) can be expressed as

ẋ(t) = Ax(t) + Bu(t) (2)

x(0) = x0

where

x(t) =
[

xT
1 (t) xT

2 (t) · · · xT
N (t)

]T
,

u(t) =
[

uT
1 (t) uT

2 (t) · · · uT
N (t)

]T
,

x0 =
[

xT
10 xT

20 · · · xT
N0

]T
,

A =




A11 A12 · · · A1N

A21 A22 · · · A2N

...
...

. . .
...

AN1 AN2 · · · ANN


 ,

B = blockdiag
(

B1, B2, · · · , BN

)
.

The plant parameters are assumed to satisfy the following

condition.

Condition 1: There exist symmetric matrices Si ∈
Rni×ni (i = 1, 2, · · · , N) and Ti ∈ Rmi×mi (i =
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1, 2, · · · , N) which satisfy the following LMIs.

L =




−S1A
T
11 −A11S1 + B1T1B

T
1

−S2A
T
12 −A21S1

...

−SNAT
1N −AN1S1

−A12S2 − S1A
T
21

−S2A
T
22 −A22S2 + B2T2B

T
2

...

−SNAT
2N −AN2S2

· · · −A1NSN − S1A
T
N1

· · · −A2NSN − S2A
T
N2

. . .
...

· · · −SNAT
NN −ANNSN + BNTNBT

N




> 0 (3)

Si > 0 (i = 1, 2, · · · , N) (4)

Ti > 0 (i = 1, 2, · · · , N) (5)
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With these Si’s and Ti’s,

Pi = S−1
i > 0 (i = 1, 2, · · · , N) (6)

Ri = T−1
i > 0 (i = 1, 2, · · · , N) (7)

are determined and a decentralized feedback law for each

subsystem (1) is constructed as

ui(t) = −R−1
i BT

i Pixi(t) (i = 1, 2, · · · , N) (8)

or

u(t) = −R−1BT Px(t) (9)

to give the closed loop system

ẋi(t) =

N∑
j=1

Aijxj(t)−BiR
−1
i BT

i Pixi(t) (10)

(i = 1, 2, · · · , N)

or

ẋ(t) = (A−BR−1BT P )x(t) (11)

is obtained where

P = blockdiag
(

P1, P2, · · · , PN

)
> 0

R = blockdiag
(

R1, R2, · · · , RN

)
> 0.

If we define

Q =


−AT
11P1 − P1A11 + P1B1R

−1
1 BT

1 P1

−AT
12P1 − P2A21

...

−AT
1NP1 − PNAN1

−P1A12 −AT
21P2

−AT
22P2 − P2A22 + P2B2R

−1
2 BT

2 P2

...

−AT
2NP2 − PNAN2

· · · −P1A1N −AT
N1PN

· · · −P2A2N −AT
N2PN

. . .
...

· · · −AT
NNPN − PNANN + PNBNR−1

N BT
NPN




(12)

the following lemma was shown[5].

Lemma 1: Under Condition 1, the resulting overall closed

loop system (11) is asymptotically stable, and it is the LQ

regulator minimizing the cost functional

J =

∫ ∞

0

{
xT (t)Qx(t) + uT (t)Ru(t)

}
dt. (13)
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In its consequence, it is assured to have insensitivity property

and good stability margin [6], [7].

3. Extension
The method in [5] assured only the stability of the overall

closed loop system. In this section, an extended method,

which assures the stability not only of the overall system but

also of each subsystem without interconnection, is proposed.

3.1. Cutting All Interconnections

The plant parameters are assumed to satisfy the following

condition.

Condition 2: There exist symmetric matrices Si ∈
Rni×ni (i = 1, 2, · · · , N) and Ti ∈ Rmi×mi (i =

1, 2, · · · , N) which satisfy the following LMIs.

L =




−S1A
T
11 −A11S1 + B1T1B

T
1

−S2A
T
12 −A21S1

...

−SNAT
1N −AN1S1

−A12S2 − S1A
T
21

−S2A
T
22 −A22S2 + B2T2B

T
2

...

−SNAT
2N −AN2S2

· · · −A1NSN − S1A
T
N1

· · · −A2NSN − S2A
T
N2

. . .
...

· · · −SNAT
NN −ANNSN + BNTNBT

N




> 0 (14)

−SiA
T
ii −AiiSi + BiTiB

T
i > 0 (i = 1, 2, · · · , N) (15)

Si > 0 (i = 1, 2, · · · , N) (16)

Ti > 0 (i = 1, 2, · · · , N) (17)

2

The decentralized feedback law is constructed as (8) and the

closed loop system is formed as (10). Then the following

theorem holds.

Theorem 1: Under Condition 2, the resulting overall

closed loop system (11) is asymptotically stable, and it is

the LQ regulator minimizing the cost functional

J =

∫ ∞

0

{
xT (t)Qx(t) + uT (t)Ru(t)

}
dt. (18)

27



Moreover, even if all the interconnections are cut, each closed

loop system is still stable and it is the LQ regulator mini-

mizing the cost functional

Ji =

∫ ∞

0

{
xT

i (t)Qixi(t) + uT
i (t)Riui(t)

}
dt (19)

where

Qi = −AT
iiPi − PiAii + PiBiR

−1
i BT

i Pi. (i = 1, 2, · · · , N)

(20)

(proof) When all the interconnections are alive, Lemma 1

assures the first half of the theorem. Let us consider the

case that all the interconnections are cut. Pre- and post

multiplying Pi to (15) gives Qi > 0. This means that the

isolated subsystems

ẋi(t) = Aiixi(t) + Biui(t) (i = 1, 2, · · · , N) (21)

with the local feedback (8) is an LQ regulator minimizing

the cost function (19), so the closed loop subsystems are all

stable.

2

3.2. Cutting Some Interconnections

Next, let us consider the case that some of the interconnec-

tions may be cut but others not. If the interconnection from

the j-th subsystem to the i-th subsystem may be cut, let

Āij = 0 (22)

and if it may not be cut, let

Āij = Aij . (23)

The plant parameters are assumed to satisfy the following

condition.

Condition 3: There exist symmetric matrices Si ∈
Rni×ni (i = 1, 2, · · · , N) and Ti ∈ Rmi×mi (i =

1, 2, · · · , N) which satisfy the following LMIs.

L =




−S1A
T
11 −A11S1 + B1T1B

T
1

−S2A
T
12 −A21S1

...

−SNAT
1N −AN1S1

−A12S2 − S1A
T
21

−S2A
T
22 −A22S2 + B2T2B

T
2

...

−SNAT
2N −AN2S2

· · · −A1NSN − S1A
T
N1

· · · −A2NSN − S2A
T
N2

. . .
...

· · · −SNAT
NN −ANNSN + BNTNBT

N




> 0 (24)

L̄ =




−S1A
T
11 −A11S1 + B1T1B

T
1

−S2Ā
T
12 − Ā21S1

...

−SN ĀT
1N − ĀN1S1

−Ā12S2 − S1Ā
T
21

−S2A
T
22 −A22S2 + B2T2B

T
2

...

−SN ĀT
2N − ĀN2S2

· · · −Ā1NSN − S1Ā
T
N1

· · · −Ā2NSN − S2Ā
T
N2

. . .
...

· · · −SNAT
NN −ANNSN + BNTNBT

N




> 0 (25)

Si > 0 (i = 1, 2, · · · , N) (26)

Ti > 0 (i = 1, 2, · · · , N) (27)
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The decentralized feedback law is constructed as (8) and the

closed loop system is formed as (10). Then the following

theorem holds.

Theorem 2: Under Condition 3, the resulting overall

closed loop system (11) is asymptotically stable, and it is

the LQ regulator minimizing the cost functional

J =

∫ ∞

0

{
xT (t)Qx(t) + uT (t)Ru(t)

}
dt. (28)

Moreover, even if the previously assigned interconnections

are cut, the closed loop system is still stable and it is the LQ

regulator minimizing the cost functional

J̄ =

∫ ∞

0

{
xT (t)Q̄x(t) + uT (t)Ru(t)

}
dt (29)

where

Q̄ =


−AT
11P1 − P1A11 + P1B1R

−1
1 BT

1 P1

−ĀT
12P1 − P2Ā21

...

−ĀT
1NP1 − PN ĀN1

−P1Ā12 − ĀT
21P2

−AT
22P2 − P2A22 + P2B2R

−1
2 BT

2 P2

...

−ĀT
2NP2 − PN ĀN2

· · · −P1Ā1N − ĀT
N1PN

· · · −P2Ā2N − ĀT
N2PN

. . .
...

· · · −AT
NNPN − PNANN + PNBNR−1

N BT
NPN




(30)

(proof) When all the interconnections are alive, Lemma 1

assures the first half of the theorem. Let us consider the

case that the previously assigned interconnections are cut.

Pre- and post multiplying P to (25) gives

Q̄ = −PĀ− ĀT P + PBR−1BT P > 0 (31)

where

Ā =




A11 Ā12 · · · Ā1N

Ā21 A22 · · · Ā2N

...
...

. . .
...

ĀN1 ĀN2 · · · ANN


 .
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This means that the overall system

ẋ(t) = (Ā−BR−1BT P )x(t) (32)

is an LQ regulator minimizing the cost functional (29), so

the closed loop systems is stable.

2

Remark: Theorem 2 shows the stability only of two cases:

one case that all the interconnections are alive, and the other

case that all the previously assigned interconnections are cut.

If there are more cases for which the stability should be re-

tained, the LMI condition can be added in a same manner.

It is a feature of the LMI based approaches.

4. Simplification
In the above method, all subsystems must be controlled, but

in practice, it is not necessary to control all subsystems. So,

in this section, a method to reduce the number of feedback

loops is proposed, where only some selected subsystems are

controlled.

4.1. Feedback Loop Reduction

Let us divide subsystems into two sets: subsystems to be

controlled (Sc) and others not to be controlled (Sr). If the

i-th subsystem belongs to Sr, let

B̃i = 0 (33)

otherwise, let

B̃i = Bi. (34)

This means that the subsystems not to be controlled are

regarded as ones without the input channel. The plant pa-

rameters are assumed to satisfy the following condition.

Condition 4: There exist symmetric matrices Si ∈
Rni×ni (i = 1, 2, · · · , N) and Ti ∈ Rmi×mi (i =

1, 2, · · · , N) which satisfy the following LMIs.

L̃ =




−S1A
T
11 −A11S1 + B̃1T1B̃

T
1

−S2A
T
12 −A21S1

...

−SNAT
1N −AN1S1

−A12S2 − S1A
T
21

−S2A
T
22 −A22S2 + B̃2T2B̃

T
2

...

−SNAT
2N −AN2S2

· · · −A1NSN − S1A
T
N1

· · · −A2NSN − S2A
T
N2

. . .
...

· · · −SNAT
NN −ANNSN + B̃NTN B̃T

N




> 0 (35)

Si > 0 (i = 1, 2, · · · , N) (36)

Ti > 0 (i = 1, 2, · · · , N) (37)
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Using these Si’s and Ti’s,

Pi = S−1
i > 0 (i = 1, 2, · · · , N) (38)

Ri = T−1
i > 0 (i = 1, 2, · · · , N) (39)

are calculated and a decentralized feedback law for each sub-

system (1) is constructed as

ui(t) = −R−1
i B̃T

i Pixi(t) (i = 1, 2, · · · , N) (40)

or

u(t) = −R−1B̃T Px(t). (41)

where

B̃ = blockdiag
(

B̃1 B̃2 · · · B̃N

)
.

Then the closed loop system

ẋi(t) =

N∑
j=1

Aijxj(t)− B̃iR
−1
i B̃T

i Pixi(t) (42)

(i = 1, 2, · · · , N)

or

ẋ(t) = (A− B̃R−1B̃T P )x(t) (43)

is obtained where

P = blockdiag
(

P1, P2, · · · , PN

)
> 0

R = blockdiag
(

R1, R2, · · · , RN

)
> 0.

Theorem 3: Under Condition 4, the resulting overall

closed loop system (43) is stable and it is the LQ regula-

tor minimizing the cost functional

J̃ =

∫ ∞

0

{
xT (t)Q̃x(t) + uT (t)Ru(t)

}
dt (44)

where

Q̃ =


−AT
11P1 − P1A11 + P1B̃1R

−1
1 B̃T

1 P1

−AT
12P1 − P2A21

...

−AT
1NP1 − PNAN1

−P1A12 −AT
21P2

−AT
22P2 − P2A22 + P2B̃2R

−1
2 B̃T

2 P2

...

−AT
2NP2 − PNAN2

· · · −P1A1N −AT
N1PN

· · · −P2A2N −AT
N2PN

. . .
...

· · · −AT
NNPN − PNANN + PN B̃NR−1

N B̃T
NPN




(45)

(proof) Pre- and post multiplying P to (35) gives

Q̃ = −PA−AT P + PB̃R−1B̃T P > 0. (46)

This means that the overall closed loop system is an LQ

regulator minimizing the cost functional (44), so the closed

loop system is stable.

2
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4.2. Grouping of Controlled Subsystems

If the i-th subsystem belongs to Sr,

B̃i = 0 (47)

means

ui(t) = 0, (48)

that is, the i-th subsystem is not needed to be controlled.

There may be various combinations of controlled and not

controlled groups. One way to find the optimal set among

them is to introduce another cost functional

C =
∑

i

ci (49)

where ci is the cost of the decentralized controller for the

i-th subsystem.

For some of the selections, the decentralized controller may

not be found. For the other of the selections, it may be

found. Among the latter selections, we should choose the set

of controlled subsystems to minimize the newly introduced

cost function. Even if some of the subsystems are not con-

trolled, the resulting overall closed loop system is still stable

and belongs to a class of LQ regulators, so it is assured to

have good robustness properties.

5. Conclusion
An LMI based method to construct an optimal decentralized

feedback law for large scale systems was discussed. It was

extended to assure the stability not only of the overall system

but also of the subsystems without interconnections. It was

also simplified so that not all but only some of the subsystems

were needed to be controlled.
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