• 제목/요약/키워드: laminated composite structure

검색결과 188건 처리시간 0.021초

복합재 구조물의 모서리 곡면 부위에 대한 두께방향 응력 연구 (Study on through the thickness stresses in the corner radius of a laminated composite structure)

  • 김성준;황인희
    • 한국항공우주학회지
    • /
    • 제41권8호
    • /
    • pp.665-672
    • /
    • 2013
  • 적층된 복합재 구조물의 강도와 강성 저하를 발생시키는 중요원인 중의 하나는 복합재 층 사이에 발생하는 층간 분리이다. 적용되는 대부분의 복합재 구조물은 어느 정도 곡률을 가지고 있다. 만약 굽은 복합재 구조물이 굽힘 하중을 받게 되면 평평하게 되려는 현상 때문에 두께 방향의 수직응력이 발생하게 되며, 최대 응력이 발생되는 곳에서 층간 분리가 발생한다. 본 논문에서는 굽은 복합적층 보의 반경방향 응력을 결정하는 방법을 설명하고, 층간 분리 응력에 미치는 적층 순서의 영향을 검토하였다. 그리고 층간분리 응력의 크기와 위치를 이론적인 해와 유한요소 방법을 이용하여 해석하고 비교하였다.

Optimization of static response of laminated composite plate using nonlinear FEM and ANOVA Taguchi method

  • Pratyush Kumar Sahu;Trupti Ranjan Mahapatra;Sanjib Jaypuria;Debadutta Mishra
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.625-639
    • /
    • 2023
  • In this paper, a Taguchi-based finite element method (FEM) has been proposed and implemented to assess optimal design parameters for minimum static deflection in laminated composite plate. An orthodox mathematical model (based on higher-order shear deformation plate theory and Green-Lagrange geometrical nonlinearity) has been used to compute the nonlinear central deflection values of laminated composite plates according to Taguchi design of experiment via a self-developed MATLAB computer code. The lay-up scheme, aspect ratio, thickness ratio and the support conditions of the laminated composite plate structure were designated as the governable design parameters. Analysis of variance (ANOVA) is used to investigate the effect of diverse control factors on the nonlinear static responses. Moreover, regression model is developed for predicting the desired responses. The ANOVA revealed that the lay-up scheme alongside the support condition plays vital role in minimizing the central deflection values of laminated composite plate under uniformly distributed load. The conformity test results of Taguchi analysis are also in good agreement with the numerical experimentation results.

압전 세라믹 감지기/작동기와 점탄성 재료를 이용한 지능형 복합 적층판의 진동 제어 (Vibration Control of Smart Laminated Composite Plates Using Piezoceramic Sensor/Actuators and Viscoelastic Material)

  • 강영규;서경민;이시복
    • 한국소음진동공학회논문집
    • /
    • 제11권4호
    • /
    • pp.37-42
    • /
    • 2001
  • Active vibration control of laminated composite plates has been carried out to design structure with maximum possible damping capacity, using piezoceramic sensor/actuators and passive constrained-layer damping treatment. The equations of motion are derived for symmetrical, multi-layer laminated plates. The damping ratio(ζ) and modal damping(2ζ$\omega$) of the first bending and torsional modes are calculated by means of iterative complex eigensolution method for both passive and active vibration control. This paper addresses a design strategy of laminated composite plate under structural vibrations.

  • PDF

수동 구속감쇠층을 갖는 복합적층보의 진동특성 (Vibration Characteristics of Laminated Composite Beams with Passive Constrained Layer Damping)

  • 강영규
    • 한국소음진동공학회논문집
    • /
    • 제12권12호
    • /
    • pp.964-969
    • /
    • 2002
  • The flexural vibration of laminated composite beams with passive constrained layer damping has been investigated to design structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, multi-layer laminated beams. The damping ratio and modal damping of the first bending mode are calculated by means of Iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations.

능동구속감쇠 기법을 이용한 복합적층보의 진동 제어 (Vibration Control of Laminated Composite Beams Using Active Constrained Layer Damping Treatment)

  • 강영규;최승복
    • 한국소음진동공학회논문집
    • /
    • 제11권7호
    • /
    • pp.261-266
    • /
    • 2001
  • The flexural vibration of laminated composite beams with active and passive constrained layer damping has been investigated to design a structure with maximum possible damping capacity. The equations of motion are derived fro flexural vibrations of symmetrical,. multi-layer laminated beams. The damping ratio and model damping of the first bending mode are calculated by means of iterative complex eigensolution method. The direct negative velocity feedback control is used for the active constrained layer damping. It is shown that the flexible laminated beam is more effective in the vibration control for both active and passive constrained layer damping. and this paper addresses a design strategy of laminated composite under flexural vibrations with constrained layer damping.

  • PDF

Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.;Mehar, Kulmani
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.629-639
    • /
    • 2018
  • In this paper, the vibroacoustic responses of baffled laminated composite sandwich flat panel structure under the influence of harmonic excitation are studied numerically using a novel higher-order coupled finite-boundary element model. A numerical scheme for the vibrating plate has been developed in the frame work of the higher-order mid-plane kinematics and the eigen frequencies are obtained by employing suitable finite element steps. The acoustic responses are then computed by solving the Helmholtz wave equation using boundary element method coupled with the structural finite elements. The proposed scheme has been implemented via an own MATLAB base code to compute the desired responses. The validity of the present model is established from the conformance of the current natural frequencies and the radiated sound power with the available benchmark solutions. The model is further utilized to scrutinize the influence of core-to-face thickness ratio, modular ratio, lamination scheme and the support condition on the sound radiation characteristics of the vibrating sandwich flats panel. It can be concluded that the present scheme is not only accurate but also efficient and simple in providing solutions of the coupled vibroacoustic response of laminated composite sandwich plates.

Frequency and thermal buckling information of laminated composite doubly curved open nanoshell

  • Dai, Humin;Safarpour, Hamed
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.1-14
    • /
    • 2021
  • In the present computational approach, thermal buckling and frequency characteristics of a doubly curved laminated nanopanel with the aid of Two-Dimensional Generalized Differential Quadrature Method (2D-GDQM) and Nonlocal Strain Gradient Theory (NSGT) are investigated. Additionally, the temperature changes along the thickness direction nonlinearly. The novelty of the current study is in considering the effects of laminated composite and thermal in addition of size effect on frequency, thermal buckling, and dynamic deflections of the laminated nanopanel. The acquired numerical and analytical results are compared by each other to validate the results. The results demonstrate that some geometrical and physical parameters, have noticeable effects on the frequency and pre-thermal buckling behavior of the doubly curved open cylindrical laminated nanopanel. The favorable suggestion of this survey is that for designing the laminated nano-sized structure should pay special attention to size-dependent parameters because nonlocal and length scale parameters have an important role in the static and dynamic behaviors of the laminated nanopanel.

좌굴을 고려한 적층 복합재 구조의 강건 최적설계에 관한 연구 (A Study on Robust Optimal Design of Laminated Composite Structures with Buckling Constraints)

  • 이병채;이정준;정도현
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1483-1492
    • /
    • 2001
  • A robust optimization procedure is applied to determine the design of the laminated composite plates with buckling constraints. In order to investigate the variation effect to the whole performance of a structure, both design variables and system parameters are assumed as random variables about their nominal values. The robust optimization method has advantages that the mean value and the variation of the performance function are controlled simultaneously and the second order sensitivity information is not required. Considering the information of uncertainty, robust optima for the buckling load of the laminated composite plates with cut-out is obtained. The robustness of the structures is compared to that of the deterministic optimization using scaling factors.

압전재료와 점탄성 재료를 이용한 지능 복합적층보의 하이 브리드 진동제어 (Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material)

  • 강영규
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.148-153
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping hale been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory

  • Baseri, Vahid;Jafari, Gholamreza Soleimani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.883-919
    • /
    • 2016
  • In this research, buckling analysis of an embedded laminated composite plate is investigated. The elastic medium is simulated with spring constant of Winkler medium and shear layer. With considering higher order shear deformation theory (Reddy), the total potential energy of structure is calculated. Using Principle of Virtual Work, the constitutive equations are obtained. The analytical solution is performed in order to obtain the buckling loads. A detailed parametric study is conducted to elucidate the influences of the layer numbers, orientation angle of layers, geometrical parameters, elastic medium and type of load on the buckling load of the system. Results depict that the highest buckling load is related to the structure with angle-ply orientation type and with increasing the angle up to 45 degrees, the buckling load increases.