Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.1.001

Frequency and thermal buckling information of laminated composite doubly curved open nanoshell  

Dai, Humin (Department of Advanced Manufacture Technology, Guangdong Mechanical Electrical Polytechnic)
Safarpour, Hamed (Mechanical Engineering department, Faculty of Engineering, Imam Khomeini International University)
Publication Information
Advances in nano research / v.10, no.1, 2021 , pp. 1-14 More about this Journal
Abstract
In the present computational approach, thermal buckling and frequency characteristics of a doubly curved laminated nanopanel with the aid of Two-Dimensional Generalized Differential Quadrature Method (2D-GDQM) and Nonlocal Strain Gradient Theory (NSGT) are investigated. Additionally, the temperature changes along the thickness direction nonlinearly. The novelty of the current study is in considering the effects of laminated composite and thermal in addition of size effect on frequency, thermal buckling, and dynamic deflections of the laminated nanopanel. The acquired numerical and analytical results are compared by each other to validate the results. The results demonstrate that some geometrical and physical parameters, have noticeable effects on the frequency and pre-thermal buckling behavior of the doubly curved open cylindrical laminated nanopanel. The favorable suggestion of this survey is that for designing the laminated nano-sized structure should pay special attention to size-dependent parameters because nonlocal and length scale parameters have an important role in the static and dynamic behaviors of the laminated nanopanel.
Keywords
pre-thermal buckling; frequency characteristics; laminated nanopanel; NSGT; nonlinear thermal loading;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., Int. J., 8(1), 83-94. https://doi.org/10.12989/anr.2020.8.1.083.   DOI
2 Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., Int. J., 5(2), 179-192. https://doi.org/10.12989/anr.2017.5.2.179.   DOI
3 Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109.   DOI
4 Ghannadpour, S. and Moradi, F. (2019), "Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique", Adv. Nano Res., Int. J., 7(5), 311-324. https://doi.org/10.12989/anr.2019.7.5.311.   DOI
5 Gholami, R. and Ansari, R. (2019), "On the nonlinear vibrations of polymer nanocomposite rectangular plates reinforced by graphene nanoplatelets: a unified higher-order shear deformable model", Iran. J. Sci. Technol. Trans. Mech. Eng., 43(1), 603-620. https://doi.org/10.1007/s40997-018-0182-9.   DOI
6 Gunasekaran, V., Pitchaimani, J. and Chinnapandi, L.B.M. (2020), "Analytical investigation on free vibration frequencies of polymer nano composite plate: Effect of graphene grading and non-uniform edge loading", Mater. Today Commun., 24, 100910. https://doi.org/10.1016/j.mtcomm.2020.100910.   DOI
7 Hu, Y. and Wang, T. (2016), "Nonlinear free vibration of a rotating circular plate under the static load in magnetic field", Nonlin. Dyn., 85(3), 1825-1835. https://doi.org/10.1007/s11071-016-2798-x.   DOI
8 Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.   DOI
9 Javani, M., Kiani, Y. and Eslami, M. (2020), "Thermal buckling of FG graphene platelet reinforced composite annular sector plates", Thin-Wall. Struct., 148, 106589. https://doi.org/10.1016/j.tws.2019.106589.   DOI
10 Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.   DOI
11 Karimiasl, M., Ebrahimi, F. and Vinyas, M. (2019), "Nonlinear vibration analysis of multiscale doubly curved piezoelectric composite shell in hygrothermal environment", J. Intell. Mater. Syst. Struct., 30(10), 1594-1609. https://doi.org/10.1177/1045389X19835956.   DOI
12 Khosravi, F., Hosseini, S.A., Hamidi, B.A., Dimitri, R. and Tornabene, F. (2020), "Nonlocal torsional vibration of elliptical nanorods with different boundary conditions", Vibration, 3(3), 189-203. https://doi.org/10.3390/vibration3030015.   DOI
13 Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135.   DOI
14 Sofiyev, A.H., Mammadov, Z., Dimitri, R. and Tornabene, F. (2020), "Vibration analysis of shear deformable carbon nanotubes‐based functionally graded conical shells resting on elastic foundations", Math. Methods Appl. Sci., In Press. https://doi.org/10.1002/mma.6674   DOI
15 Song, M., Li, X., Kitipornchai, S., Bi, Q. and Yang, J. (2019), "Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates", Nonlin. Dyn., 95(3), 2333-2352. https://doi.org/10.1007/s11071-018-4695-y.   DOI
16 Thai, C.H., Ferreira, A., Tran, T. and Phung-Van, P. (2019), "Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation", Compos. Struct., 220, 749-759. https://doi.org/10.1016/j.compstruct.2019.03.100.   DOI
17 Thai, C.H., Nguyen‐Xuan, H., Nguyen‐Thanh, N., Le, T.H., Nguyen‐Thoi, T. and Rabczuk, T. (2012), "Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS‐based isogeometric approach", Int. J. Num. Methods Eng., 91(6), 571-603. https://doi.org/10.1002/nme.4282.   DOI
18 Liu, D., Li, Z., Kitipornchai, S. and Yang, J. (2019), "Threedimensional free vibration and bending analyses of functionally graded graphene nanoplatelets-reinforced nanocomposite annular plates", Compos. Struct., 229, 111453. https://doi.org/10.1016/j.compstruct.2019.111453.   DOI
19 Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Methods Appl. Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.   DOI
20 Tornabene, F. and Viola, E. (2009), "Free vibration analysis of functionally graded panels and shells of revolution", Meccanica, 44(3), 255-281. https://doi.org/10.1007/s11012-008-9167-x.   DOI
21 Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., Int. J., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.   DOI
22 Tornabene, F., Viola, E. and Inman, D.J. (2009), "2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures", J. Sound Vib., 328(3), 259-290. https://doi.org/10.1016/j.jsv.2009.07.031.   DOI
23 Tornabene, F., Viola, E. and Fantuzzi, N. (2013), "General higherorder equivalent single layer theory for free vibrations of doubly-curved laminated composite shells and panels", Compos. Struct., 104, 94-117. https://doi.org/10.1016/j.compstruct.2013.04.009.   DOI
24 Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories", Compos. Part B Eng., 67, 490-509. https://doi.org/10.1016/j.compositesb.2014.08.012.   DOI
25 Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015a), "Strong formulation finite element method based on differential quadrature: A survey", Appl. Mech. Rev., 67(2), 020801. https://doi.org/10.1115/1.4028859.   DOI
26 Mahinzare, M., Ranjbarpur, H. and Ghadiri, M. (2018), "Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate", Mech. Syst. Signal Process., 100, 188-207. https://doi.org/10.1016/j.ymssp.2017.07.041.   DOI
27 Mahinzare, M., Alipour, M.J., Sadatsakkak, S.A. and Ghadiri, M. (2019), "A nonlocal strain gradient theory for dynamic modeling of a rotary thermo piezo electrically actuated nano FG circular plate", Mech. Syst. Signal Process., 115, 323-337. https://doi.org/10.1016/j.ymssp.2018.05.043.   DOI
28 Malikan, M., Nguyen, V.B. and Tornabene, F. (2018), "Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory", Eng. Sci. Technol., 21(4), 778-786. https://doi.org/10.1016/j.jestch.2018.06.001.   DOI
29 Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2019), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sandw. Struct Mater., 1099636219839302. https://doi.org/10.1177/1099636219839302.   DOI
30 Mohseni, A. and Shakouri, M. (2020), "Natural frequency, damping and forced responses of sandwich plates with viscoelastic core and graphene nanoplatelets reinforced face sheets", J. Vib. Control, 1077546319893453. https://doi.org/10.1177/1077546319893453.   DOI
31 Tornabene, F., Fantuzzi, N., Viola, E. and Batra, R.C. (2015b), "Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory", Compos. Struct., 119, 67-89. https://doi.org/10.1016/j.compstruct.2014.08.005.   DOI
32 Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B Eng., 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016.   DOI
33 Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes", Compos. Part B Eng., 115, 449-476. https://doi.org/10.1016/j.compositesb.2016.07.011.   DOI
34 Tounsi, A., Benguediab, S., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of doublewalled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001.   DOI
35 Tran, T.T., Tran, V.K., Le, P.B., Phung, V.M., Do, V.T. and Nguyen, H.N. (2020), "Forced vibration analysis of laminated composite shells reinforced with graphene nanoplatelets using finite element method", Adv. Civ. Eng., 2020, 1471037. https://doi.org/10.1155/2020/1471037.   DOI
36 Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q. and Bordas, S.P. (2013), "NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter", Compos. Struct., 99, 309-326. https://doi.org/10.1016/j.compstruct.2012.11.008.   DOI
37 Viola, E. and Tornabene, F. (2009), "Free vibrations of three parameter functionally graded parabolic panels of revolution", Mech. Res. Commun., 36(5), 587-594. https://doi.org/10.1016/j.mechrescom.2009.02.001.   DOI
38 Muc, A. (2011), "SHM of composite cylindrical multilayered shells with delaminations", Proceedings of the IUTAM Symposium on Dynamics Modeling and Interaction Control in Virtual and Real Environments, Budapest, Hungary, June. https://doi.org/10.1007/978-94-007-1643-8_25.   DOI
39 Muc, A. (2020), "Non-local approach to free vibrations and buckling problems for cylindrical nano-structures", Compos. Struct., 250, 112541. https://doi.org/10.1016/j.compstruct.2020.112541.   DOI
40 Nguyen-Thoi, T., Rabczuk, T., Ho-Huu, V., Le-Anh, L., DangTrung, H. and Vo-Duy, T. (2017), "An extended cell-based smoothed three-node Mindlin plate element (XCS-MIN3) for free vibration analysis of cracked FGM plates", Int. J. Comput. Methods, 14(2), 1750011. https://doi.org/10.1142/S0219876217500116.   DOI
41 Viola, E., Tornabene, F. and Fantuzzi, N. (2013), "Static analysis of completely doubly-curved laminated shells and panels using general higher-order shear deformation theories", Compos. Struct., 101, 59-93. https://doi.org/10.1016/j.compstruct.2013.01.002.   DOI
42 Wang, Y., Zeng, R. and Safarpour, M. (2020), "Vibration analysis of FG-GPLRC annular plate in a thermal environment", Mech. Based Des. Struct. Mach., 2020, 1-19. https://doi.org/10.1080/15397734.2020.1719508.   DOI
43 Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163.   DOI
44 Wu, H., Zhu, J., Kitipornchai, S., Wang, Q., Ke, L.L. and Yang, J. (2020), "Large amplitude vibration of functionally graded graphene nanocomposite annular plates in thermal environments", Compos. Struct., 239, 112047. https://doi.org/10.1016/j.compstruct.2020.112047.   DOI
45 Yang, B., Kitipornchai, S., Yang, Y.F. and Yang, J. (2017), "3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates", Appl. Math. Model., 49, 69-86. https://doi.org/10.1016/j.apm.2017.04.044.   DOI
46 Zur, K.K., Arefi, M., Kim, J. and Reddy, J. (2020), "Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory", Compos. Part B Eng., 182, 107601. https://doi.org/10.1016/j.compositesb.2019.107601.   DOI
47 Muc, A. and Chwal, M. (2011), "Vibration control of defects in carbon nanotubes", Proceedings of the IUTAM Symposium on Dynamics Modeling and Interaction Control in Virtual and Real Environments, Budapest, Hungary, June. https://doi.org/10.1007/978-94-007-1643-8_27.   DOI
48 Muc, A. and Ulatowska, A. (2012), "Local fibre reinforcement of holes in composite multilayered plates", Compos. Struct., 94(4), 1413-1419. https://doi.org/10.1016/j.compstruct.2011.11.017.   DOI
49 Muc, A., Chwal, M. and Stawiarski, A. (2019), "Experimental and numerical analysis of heat convection in cylindrical composite structures with internal defects", Adv. Compos. Lett., 28, 0963693519879699. https://doi.org/10.1177/0963693519879699.   DOI
50 Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.   DOI
51 Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H. and Bordas, S.P. (2010), "An alternative alpha finite element method (AαFEM) for free and forced structural vibration using triangular meshes", J. Comput. Appl. Math., 233(9), 2112-2135. https://doi.org/10.1016/j.cam.2009.08.117.   DOI
52 Noroozi, A.R., Malekzadeh, P., Dimitri, R. and Tornabene, F. (2020), "Meshfree radial point interpolation method for the vibration and buckling analysis of FG-GPLRC perforated plates under an in-plane loading", Eng. Struct., 221, 111000. https://doi.org/10.1016/j.engstruct.2020.111000.   DOI
53 Qin, Z., Yang, Z., Zu, J. and Chu, F. (2018), "Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates", Int. J. Mech. Sci., 142, 127-139. https://doi.org/10.1016/j.ijmecsci.2018.04.044.   DOI
54 SafarPour, H., Hosseini, M. and Ghadiri, M. (2017), "Influence of three-parameter viscoelastic medium on vibration behavior of a cylindrical nonhomogeneous microshell in thermal environment: An exact solution", J. Therm. Stress., 40(11), 1353-1367. https://doi.org/10.1080/01495739.2017.1350827.   DOI
55 Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018), "Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs", Compos. Struct., 198, 51-62. https://doi.org/10.1016/j.compstruct.2018.05.031.   DOI
56 Salari, F.E.E. (2016), "Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams", Adv. Nano Res., Int. J., 4(3), 197-228. https://doi.org/10.12989/anr.2016.4.3.197.   DOI
57 Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A. (2017), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.   DOI
58 Arani, A.G., Pourjamshidian, M., Arefi, M. and Arani, M. (2019), "Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress", Smart Struct. Syst., Int. J., 23(2), 141-153. https://doi.org/10.12989/sss.2019.23.2.141.   DOI
59 Arefi, M. (2020), "Smart analysis of doubly curved piezoelectric nano shells: Electrical and mechanical buckling analysis", Smart Struct. Syst., Int. J., 25(4), 471-486. https://doi.org/10.12989/sss.2020.25.4.471.   DOI
60 Arefi, M. and Rabczuk, T. (2019), "A nonlocal higher order shear deformation theory for electro-elastic analysis of a piezoelectric doubly curved nano shell", Compos. Part B Eng., 168, 496-510. https://doi.org/10.1016/j.compositesb.2019.03.065.   DOI
61 Nguyen-Thoi, T., Phung-Van, P., Rabczuk, T., Nguyen-Xuan, H. and Le-Van, C. (2013), "Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM)", Int. J. Comput. Methods, 10(1), 1340008. https://doi.org/10.1142/S0219876213400082.   DOI
62 Nguyen-Thoi, T., Rabczuk, T., Lam-Phat, T., Ho-Huu, V. and Phung-Van, P. (2014), "Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3)", Theor. Appl. Fracture Mech., 72, 150-163. https://doi.org/10.1016/j.tafmec.2014.02.004.   DOI
63 Arefi, M. and Civalek, O. (2020), "Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory", Arch. Civ. Mech. Eng., 20(1), 1-17. https://doi.org/10.1007/s43452-020-00032-2.   DOI
64 Arefi, M. and Soltan Arani, A.H. (2020), "Nonlocal vibration analysis of the three-layered FG nanoplates subjected to applied electric potential considering thickness stretching effect", Proc. Inst. Mech. Eng. L, 2020, 1464420720928378. https://doi.org/10.1177/1464420720928378.   DOI
65 Arefi, M., Bidgoli, E.M.R., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2019a), "Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets", Compos. Part B Eng., 166, 1-12. https://doi.org/10.1016/j.compositesb.2018.11.092.   DOI
66 Arefi, M., Kiani, M. and Rabczuk, T. (2019b), "Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets", Compos. Part B Eng., 168, 320-333. https://doi.org/10.1016/j.compositesb.2019.02.057.   DOI
67 Arefi, M., Mohammad-Rezaei Bidgoli, E. and Civalek, O. (2020a), "Bending response of FG composite doubly curved nanoshells with thickness stretching via higher-order sinusoidal shear theory", Mech. Based Des. Struct. Mach., 2020, 1-29. https://doi.org/10.1080/15397734.2020.1777157.   DOI
68 Arefi, M., Zamani, M. and Kiani, M. (2020b), "Smart electrical and magnetic stability analysis of exponentially graded shear deformable three-layered nanoplate based on nonlocal piezomagneto-elasticity theory", J. Sandw. Struct. Mater., 22(3), 599-625. https://doi.org/10.1177/1099636218760667.   DOI
69 Bagheri, H., Kiani, Y. and Eslami, M. (2019), "Asymmetric compressive stability of rotating annular plates", Eur. J. Comput. Mech., 2019, 1-21. https://doi.org/10.1080/17797179.2018.1560989.   DOI
70 Bai, B., Li, H., Zhang, W. and Cui, Y. (2020), "Application of extremum response surface method-based improved substructure component modal synthesis in mistuned turbine bladed disk", J. Sound Vib., 472, 115210. https://doi.org/10.1016/j.jsv.2020.115210.   DOI
71 Dai, T., Dai, H.L. and Lin, Z.Y. (2019), "Multi-field mechanical behavior of a rotating porous FGMEE circular disk with variable thickness under hygrothermal environment", Compos. Struct., 210, 641-656. https://doi.org/10.1016/j.compstruct.2018.11.077.   DOI
72 Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., Int. J., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.   DOI
73 Ebrahimi, F. and Jafari, A. (2017), "Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory", Adv. Nano Res., Int. J., 5(4), 281-301. https://doi.org/10.12989/anr.2017.5.4.281.   DOI
74 Ebrahimi, F. and Salari, E. (2019), "Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams", Adv. Nano Res., Int. J., 6(4), 377-397. https://doi.org/10.12989/anr.2018.6.4.377.   DOI
75 Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019a), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., Int. J., 7(4), 223-231. https://doi.org/10.12989/anr.2019.7.4.223.   DOI
76 Ebrahimi, F., Karimiasl, M., Civalek, Ö . and Vinyas, M. (2019b), "Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., Int. J., 7(2), 77-88. https://doi.org/10.12989/anr.2019.7.2.077.   DOI