• Title/Summary/Keyword: lOxidation Resistance

Search Result 73, Processing Time 0.022 seconds

A Study on the Evaluation of Oxidation Resistance of Nitride Films in DRAM Capacitors (DRAM 커패시터의 질화막 내산화성 평가에 관한 연구)

  • Chung, Yeun-Gun;Kang, Seong-Jun;Joung, Yang-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.451-456
    • /
    • 2021
  • In order to improve the cell capacitance and scale down in capacitors of semiconductor memory devices, a stacked ONO structure has been introduced as a dielectric layer and thinning of these layers has been attempted continuously. However, many problems have emerged in the manufacturing process. In this study, L/L LPCVD system was used to suppress the growth of natural oxide film of about 10 Å, which was able to secure the capacitance of 3fF / cell. In addition, we investigated the effect of thinning of the dielectric film on the abnormal oxidation of the nitride film, and proposed a stable process control method for forming the dielectric film to ensure oxidation resistance.

Effect of Rolling Conditions on the Sticking Phenomena of Ferritic Stainless Steel (페라이트계 스테인레스강의 Sticking 현상에 미치는 열간압연조건의 영향)

  • Jin, Won;Choi, Joem-Yong
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.110-117
    • /
    • 1997
  • Sticking behavior under the hot rolling conditions for ferritic stainless steels have been studied. Sticking, which is a phenomenon that the naked metal exposed to the surface by scale breakaway during hot rolling sticks to the roll surface, was affected by both high temperature tensile strength and oxidation resistance of the steels. A steel having higher tensile strength and lower oxidation resistance exhibits better resistance to the sticking. It is due to that higher tensile strength increases localized deformation resistance and lower oxidation resistance creates lower friction between steel and roll by forming thicker scale as a lubricant during hot rolling. So, the sticking tends to occur more severely in the order of 430J1L, 436L, 430 and 409L. The most sensitive temperature to the sticking was found to be 90$0^{\circ}C$ for all grade of steels. It was also found that the high speed steel(HSS) roll compared to the Hi-Cr roll was more beneficial to prevent sticking. Because higher surface hardness of HSS roll compared to that of Hi-Cr roll provides less nucleation sites for sticking such as scratch on the roll surface.

  • PDF

High Temperature Oxidation Behavior of 316L Austenitic Stainless Steel Manufactured by Laser Powder Bed Fusion Process (Laser powder bed fusion 공정으로 제조된 오스테나이트계 316L 스테인레스 강의 고온 산화 거동)

  • Hwang, Yu-Jin;Wi, Dong-Yeol;Kim, Kyu-Sik;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.110-119
    • /
    • 2021
  • In this study, the high-temperature oxidation properties of austenitic 316L stainless steel manufactured by laser powder bed fusion (LPBF) is investigated and compared with conventional 316L manufactured by hot rolling (HR). The initial microstructure of LPBF-SS316L exhibits a molten pool ~100 ㎛ in size and grains grown along the building direction. Isotropic grains (~35 ㎛) are detected in the HR-SS316L. In high-temperature oxidation tests performed at 700℃ and 900℃, LPBF-SS316L demonstrates slightly superior high-temperature oxidation resistance compared to HR-SS316L. After the initial oxidation at 700℃, shown as an increase in weight, almost no further oxidation is observed for both materials. At 900℃, the oxidation weight displays a parabolic trend and both materials exhibit similar behavior. However, at 1100℃, LPBF-SS316L oxidizes in a parabolic manner, but HR-SS316L shows a breakaway oxidation behavior. The oxide layers of LPBF-SS316L and HR-SS316L are mainly composed of Cr2O3, Fe-based oxides, and spinel phases. In LPBF-SS316L, a uniform Cr depletion region is observed, whereas a Cr depletion region appears at the grain boundary in HR-SS316L. It is evident from the results that the microstructure and the high-temperature oxidation characteristics and behavior are related.

The Effect of Oxides Additives on Anti-corrosion Properties of Sintered 316L Stainless Steel (STS 316L 소결체의 부식 저항 특성에 미치는 금속산화물 첨가의 영향)

  • Lee, Jong-Pil;Hong, Ji-Hyun;Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.271-277
    • /
    • 2015
  • As wrought stainless steel, sintered stainless steel (STS) has excellent high-temperature anti-corrosion even at high temperature of $800^{\circ}C$ and exhibit corrosion resistance in air. The oxidation behavior and oxidation mechanism of the sintered 316L stainless was reported at the high temperature in our previous study. In this study, the effects of additives on high-temperature corrosion resistances were investigated above $800^{\circ}C$ at the various oxides ($SiO_2$, $Al_2O_3$, MgO and $Y_2O_3$) added STS respectively as an oxidation inhibitor. The morphology of the oxide layers were observed by SEM and the oxides phase and composition were confirmed by XRD and EDX. As a result, the weight of STS 316L sintered body increased sharply at $1000^{\circ}C$ and the relative density of specimen decreased as metallic oxide addition increased. Compared with STS 316L sintered parts, weight change ratio corresponding to different oxidation time at $900^{\circ}C$ and $1000^{\circ}C$, decreased gradually with the addition of metallic oxide. The best corrosion resistance properties of STS could be improved in case of using $Y_2O_3$. The oxidation rate was diminished dramatically by suppression the peeling on oxide layers at $Y_2O_3$ added sintered stainless steel.

Structural and Electrical Properties of the Y-Cr Bilayer Deposited on Fe-l6Cr Ferritic Alloy after Heat Treatment at 800℃ (Fe-l6Cr 페라이틱 합금에 증착된 Y-Cr 이층 박막의 800℃ 열처리 후의 구조 및 전기적 특성)

  • Lee, Yong-Jin;Kim, Sang-Woo;Kim, Gyeung-Ho;Lee, Jong-Ho;Ahn, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.36-42
    • /
    • 2003
  • The oxidation behaviors of Y-Cr bilayer deposited on ferritic steel by magnetron-sputtering for application of the Fe-Cr alloys as interconnectors of planar-type solid oxide fuel cells (SOFCs) were studied. After oxidation at $800^{\circ}C$ for 40 hours, the major phase of $Y_2$$O_3$and the minor phase of $YCrO_3$, $Mn_{1.5}$ $Cr_{1.5}$ $O_4$and Cr$_2$SiO$_4$were formed in the Y/Cr bilayered samples, while the major phase of Cr$_2$O$_3$and the minor phase of $Y_2$$O_3$were formed as the major phase in the Cr/Y bilayered samples. The Log(ASR/T) that expresses electric resistance of the Y/Cr coated specimen with nonconducting $_Y2$$O_3$oxide showed high value of -2.80 Ω$\textrm{cm}^2$$K^{-1}$ / and that of the Cr/Y coated specimen with conducting $Cr_2$$O_3$oxide appeared to be -4.11 Ω$\textrm{cm}^2$$^{K}$ . The electric resistance of the Y/Cr coated specimen was largely increased due to the formation of high resistance oxide scales. However, the Cr/Y coated specimen did not show any increase in the electric resistance and had the long-term stability of oxidation because there was no formation of the secondary phases with low conductivity.

The Effects of Composition and Microstructure Variation on the Oxidation Characteristics of Stainless Steels Manufactured by Powder Metallurgy Method (분말야금 스테인리스 스틸의 산화특성에 미치는 조성 및 조직변화의 영향)

  • Lee, Jong-Pil;Hong, Ji-Hyun;Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.52-59
    • /
    • 2015
  • As well-known wrought stainless steel, sintered stainless steel (STS) has excellent high-temperature anti-corrosion even at high temperature of $800^{\circ}C$, and exhibits good corrosion resistance in air. However, when temperature increases above $900^{\circ}C$, the corrosion resistance of STS begins to deteriorate and dramatically decreases. In this study, the effects of phase and composition of STS on high-temperature corrosion resistances are investigated for STS 316L, STS 304 and STS 434L above $800^{\circ}C$. The morphology of the oxide layers are observed. The oxides phase and composition are identified using X-ray diffractometer and energy dispersive spectroscopy. The results demonstrate that the best corrosion resistance of STS could be improved to that of 434L. The poor corrosion resistance of the austenitic stainless steels is due to the fact that $NiFe_2O_4$ oxides forming poor adhesion between the matrix and oxide film increase the oxidation susceptibility of the material at high temperature.

Corrosion Behavior and Oxide Film Formation of T91 Steel under Different Water Chemistry Operation Conditions

  • Zhang, D.Q.;Shi, C.;Li, J.;Gao, L.X.;Lee, K.Y.
    • Corrosion Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • The corrosion behavior of a ferritic/martensitic steel T91 exposed to an aqueous solution containing chloride and sulfate ions is investigated depending on the stimulated all-volatile treatment (AVT) and under oxygenated treatment (OT) conditions. The corrosion of T91 steel under OT condition is severe, while the corrosion under AVT condition is not. The co-existence of chloride and sulfate ions has antagonistic effect on the corrosion of T91 steel in both AVT and OT conditions. Unlike to corrosion resistance in the aqueous solution, OT pretreatment provides T91 steel lower oxidation-resistance than VAT pretreatment. From scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) analysis, the lower corrosion resistance in the aqueous solution by VAT conditions possibly is due to the formation of pits. In addition, the lower oxidation resistance of T91 steel pretreated by OT conditions is explained as follows: the cracks formed during the immersion under OT conditions accelerated peeling-off rate of the oxide film.

High Temperature Oxidation Behavior of Ni-W Coatings Electrodeposited on Steel (강기판 위에 코팅된 Ni-W의 고온산화거동)

  • 고재황;권식철;장도연;이동복
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.6
    • /
    • pp.430-436
    • /
    • 2003
  • The nanoocrystalline Ni-l5W(at.%) coating electrodeposited on the high carbon steel was oxidized at 700 and $800^{\circ}C$ in air, and the resultant oxidation properties were investigated using XRD, EPMA, TGA and TEM. The oxidation resistance of the coating was not so good that most of the coating was oxidized after oxidation at $800^{\circ}C$ for 5 hrs. The oxidation led to the formation of the outer, thin NiO oxide scale and the inner, porous, rather thick ($NiWO_4$+NiO) mixed layer containing a bit of $WO_2$. During oxidation, substrate elements such as Fe and Cr diffused outwardly toward the coating, according to the concentration gradient.

The Effect of Oxide Compound on Electrical Resistivity and Oxidation Stability in High-temperature for Ferritic P/M Stainless Steel (산화물 혼합상이 페라이트계 P/M스테인리스강의 고온산화 및 전기저항 안정성에 미치는 영향)

  • Park, Jin-Woo;Ko, Byung-Hyun;Jung, Woo-young;Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.240-246
    • /
    • 2016
  • In order to improve the high-temperature oxidation stability, sintered 434L stainless steel is studied, focusing on the effect of the addition of metallic oxides to form stable oxide films on the inner particle surface. The green compacts of Fecralloy powder or amorphous silica are added on STS434L and oxidized at $950^{\circ}C$ up to 210 h. The weight change ratio of 434L with amorphous silica is higher than that of 434L mixed with Fecralloy, and the weight increase follows a parabolic law, which implies that the oxide film grows according to oxide diffusion through the densely formed oxide film. In the case of 434L mixed with Fecralloy, the elements in the matrix diffuse through the grain boundaries and form $Al_2O_3$ and Fe-Cr oxides. Stable high temperature corrosion resistance and electrical resistivity are obtained for STS434L mixed with Fecralloy.

Correlation of Surface Oxide Film Growth with Corrosion Resistance of Stainless Steel (스테인리스 스틸의 표면 산화피막 성장과 내부식성 상관관계)

  • Park, Youngju;Yu, Jinseok;Sim, Seong Gu;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.152-157
    • /
    • 2021
  • Stainless steel is a metal that does not generate rust. Due to its excellent workability, economic feasibility, and corrosion resistance, it is used in various industrial fields such as ships, piping, nuclear power, and machinery. However, stainless steel is vulnerable to corrosion in harsh environments. To solve this problem, its corrosion resistance could be improved by electrochemically forming an anodized film on its surface. In this study, 316L stainless steel was anodized at room temperature with ethylene glycol-based 0.1 M NH4F and 0.1M H2O electrolyte to adjust the thickness of the oxide film using different anodic oxidation voltages (30 V, 50 V, and 70 V) with time control. The anodic oxidation experiment was performed by increasing the time from 1 hour to 7 hours at 2-hour intervals. Corrosion resistance according to the thickness of the anodic oxide film was observed. Electrochemical corrosion behavior of oxide films was investigated through polarization experiments.