Browse > Article
http://dx.doi.org/10.4150/KPMI.2015.22.1.52

The Effects of Composition and Microstructure Variation on the Oxidation Characteristics of Stainless Steels Manufactured by Powder Metallurgy Method  

Lee, Jong-Pil (School of Nano and Advanced Materials Science & Engineering, and LINC, Gyeongsang National University)
Hong, Ji-Hyun (School of Nano and Advanced Materials Science & Engineering, and LINC, Gyeongsang National University)
Park, Dong-Kyu (School of Nano and Advanced Materials Science & Engineering, and LINC, Gyeongsang National University)
Ahn, In-Shup (School of Nano and Advanced Materials Science & Engineering, and LINC, Gyeongsang National University)
Publication Information
Journal of Powder Materials / v.22, no.1, 2015 , pp. 52-59 More about this Journal
Abstract
As well-known wrought stainless steel, sintered stainless steel (STS) has excellent high-temperature anti-corrosion even at high temperature of $800^{\circ}C$, and exhibits good corrosion resistance in air. However, when temperature increases above $900^{\circ}C$, the corrosion resistance of STS begins to deteriorate and dramatically decreases. In this study, the effects of phase and composition of STS on high-temperature corrosion resistances are investigated for STS 316L, STS 304 and STS 434L above $800^{\circ}C$. The morphology of the oxide layers are observed. The oxides phase and composition are identified using X-ray diffractometer and energy dispersive spectroscopy. The results demonstrate that the best corrosion resistance of STS could be improved to that of 434L. The poor corrosion resistance of the austenitic stainless steels is due to the fact that $NiFe_2O_4$ oxides forming poor adhesion between the matrix and oxide film increase the oxidation susceptibility of the material at high temperature.
Keywords
Sintered stainless steel; Anti-corrosion; Oxidation behavior;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. B. Lee: Korean J. Met. Mater., 49 (2010) 153 (Korean).
2 Y. Y. Lee, Y. H. Kim and Y. D. Lee: Korean J. Met. Mater., 32 (1994) 123 (Korean).
3 R. K. Wild: Corros. Sci., 17 (1977) 87.   DOI   ScienceOn
4 J. T. Bittel, L. H. Sjodahl and J. F. White: Corros. Sci., 25 (1969) 7.   DOI
5 S. C. Kuiry, S. Seal, S. K. Bose and S. K. Roy: ISIJ. Int., 34 (1994) 599.   DOI
6 F. H. Stott, G. C. Wood and J. Stringer: Oxid. Met., 44 (1995) 113.   DOI
7 B. Weiss and R. Stickler: Metall. Mater. Trans. A., 3 (1972) 851.
8 J. H. Ryu and K. S. Lee: Journal of the Corrosion Science Society of Korea, 21 (1992) 69. (Korean)
9 H.-S. Kim: J. Korean Powder Metall. Inst., 20 (2013) 432. (Korean)   DOI   ScienceOn
10 A. Tiziani, A. Molinari, L. Fedrizzi, A. Tomasi and P. L. Bronora: Corrosion Sci., 45 (1990) 672.
11 A. Sharon and D. Itzhak: Mater. Sci. Eng. A., 224 (1997) 177.   DOI   ScienceOn
12 S. Y. Chen, S. L. Kuan and W. T. Tsai: Corrosion Sci., 48 (2006) 634.   DOI   ScienceOn
13 A. V. C. Sobral, M. P. Hierro, F. J. Prez, W. Ristow Jr. and C. V. Franco: Mater. Corros., 51 (2000) 791.   DOI
14 I. S. Lee: Korean. J. Met. Mater., 47 (2009) 716 (Korean).
15 A. Rahmel and M. Schutz: Oxid. Met., 38 (1992) 255.   DOI
16 T. Takalo, N. Suutala and T. Moisio: Metall. Mater. Trans. A, 10 (1979) 1173.   DOI
17 Y. Y. Lee, Y. H. Kim and Y. D. Lee: Korean J. Met. Mater., 32 (1994) 2 (Korean).
18 O. Vedat Akgun: Mater. Sci. Eng. A, 203 (1995) 324.   DOI   ScienceOn
19 G. C. Wood: Corrosion Sci., 2 (1962) 173.   DOI   ScienceOn
20 D. Caplan and M. Cohen: Corros. Sci., 15 (1959) 141.
21 T. Tanabe and S. Imoto: J. Jpn. Inst. Met. Mater., 9 (1979) 507.
22 A. Bautista, F. Velasco and J. Abenojar: Corrosion Sci., 45 (2002) 1343.
23 H. Asteman, J. E. Svensson, L. G. Johansson and M. Norell: Oxid. Met., 52 (1999) 95.   DOI   ScienceOn
24 J. Botella, C. Merino and E. Otero: Oxid. Met., 49 (1998) 297.   DOI
25 F. J. Perez, M. J. Cristobal, G. Arnau, M. P. Hierro and J. J. Saura: Oxid. Met., 55 (2001) 105.   DOI   ScienceOn