DOI QR코드

DOI QR Code

The Effects of Composition and Microstructure Variation on the Oxidation Characteristics of Stainless Steels Manufactured by Powder Metallurgy Method

분말야금 스테인리스 스틸의 산화특성에 미치는 조성 및 조직변화의 영향

  • Lee, Jong-Pil (School of Nano and Advanced Materials Science & Engineering, and LINC, Gyeongsang National University) ;
  • Hong, Ji-Hyun (School of Nano and Advanced Materials Science & Engineering, and LINC, Gyeongsang National University) ;
  • Park, Dong-Kyu (School of Nano and Advanced Materials Science & Engineering, and LINC, Gyeongsang National University) ;
  • Ahn, In-Shup (School of Nano and Advanced Materials Science & Engineering, and LINC, Gyeongsang National University)
  • 이종필 (경상대학교 나노.신소재융합공학부 및 LINC 사업단) ;
  • 홍지현 (경상대학교 나노.신소재융합공학부 및 LINC 사업단) ;
  • 박동규 (경상대학교 나노.신소재융합공학부 및 LINC 사업단) ;
  • 안인섭 (경상대학교 나노.신소재융합공학부 및 LINC 사업단)
  • Received : 2015.02.12
  • Accepted : 2015.02.26
  • Published : 2015.02.28

Abstract

As well-known wrought stainless steel, sintered stainless steel (STS) has excellent high-temperature anti-corrosion even at high temperature of $800^{\circ}C$, and exhibits good corrosion resistance in air. However, when temperature increases above $900^{\circ}C$, the corrosion resistance of STS begins to deteriorate and dramatically decreases. In this study, the effects of phase and composition of STS on high-temperature corrosion resistances are investigated for STS 316L, STS 304 and STS 434L above $800^{\circ}C$. The morphology of the oxide layers are observed. The oxides phase and composition are identified using X-ray diffractometer and energy dispersive spectroscopy. The results demonstrate that the best corrosion resistance of STS could be improved to that of 434L. The poor corrosion resistance of the austenitic stainless steels is due to the fact that $NiFe_2O_4$ oxides forming poor adhesion between the matrix and oxide film increase the oxidation susceptibility of the material at high temperature.

Keywords

References

  1. D. B. Lee: Korean J. Met. Mater., 49 (2010) 153 (Korean).
  2. Y. Y. Lee, Y. H. Kim and Y. D. Lee: Korean J. Met. Mater., 32 (1994) 123 (Korean).
  3. R. K. Wild: Corros. Sci., 17 (1977) 87. https://doi.org/10.1016/0010-938X(77)90011-7
  4. J. T. Bittel, L. H. Sjodahl and J. F. White: Corros. Sci., 25 (1969) 7. https://doi.org/10.5006/0010-9312-25.1.7
  5. S. C. Kuiry, S. Seal, S. K. Bose and S. K. Roy: ISIJ. Int., 34 (1994) 599. https://doi.org/10.2355/isijinternational.34.599
  6. F. H. Stott, G. C. Wood and J. Stringer: Oxid. Met., 44 (1995) 113. https://doi.org/10.1007/BF01046725
  7. B. Weiss and R. Stickler: Metall. Mater. Trans. A., 3 (1972) 851.
  8. J. H. Ryu and K. S. Lee: Journal of the Corrosion Science Society of Korea, 21 (1992) 69. (Korean)
  9. H.-S. Kim: J. Korean Powder Metall. Inst., 20 (2013) 432. (Korean) https://doi.org/10.4150/KPMI.2013.20.6.432
  10. A. Tiziani, A. Molinari, L. Fedrizzi, A. Tomasi and P. L. Bronora: Corrosion Sci., 45 (1990) 672.
  11. A. Sharon and D. Itzhak: Mater. Sci. Eng. A., 224 (1997) 177. https://doi.org/10.1016/S0921-5093(96)10543-8
  12. S. Y. Chen, S. L. Kuan and W. T. Tsai: Corrosion Sci., 48 (2006) 634. https://doi.org/10.1016/j.corsci.2005.02.014
  13. A. V. C. Sobral, M. P. Hierro, F. J. Prez, W. Ristow Jr. and C. V. Franco: Mater. Corros., 51 (2000) 791. https://doi.org/10.1002/1521-4176(200011)51:11<791::AID-MACO791>3.0.CO;2-1
  14. I. S. Lee: Korean. J. Met. Mater., 47 (2009) 716 (Korean).
  15. A. Rahmel and M. Schutz: Oxid. Met., 38 (1992) 255. https://doi.org/10.1007/BF00666914
  16. T. Takalo, N. Suutala and T. Moisio: Metall. Mater. Trans. A, 10 (1979) 1173. https://doi.org/10.1007/BF02811663
  17. Y. Y. Lee, Y. H. Kim and Y. D. Lee: Korean J. Met. Mater., 32 (1994) 2 (Korean).
  18. O. Vedat Akgun: Mater. Sci. Eng. A, 203 (1995) 324. https://doi.org/10.1016/0921-5093(95)09807-0
  19. G. C. Wood: Corrosion Sci., 2 (1962) 173. https://doi.org/10.1016/0010-938X(62)90019-7
  20. D. Caplan and M. Cohen: Corros. Sci., 15 (1959) 141.
  21. T. Tanabe and S. Imoto: J. Jpn. Inst. Met. Mater., 9 (1979) 507.
  22. A. Bautista, F. Velasco and J. Abenojar: Corrosion Sci., 45 (2002) 1343.
  23. H. Asteman, J. E. Svensson, L. G. Johansson and M. Norell: Oxid. Met., 52 (1999) 95. https://doi.org/10.1023/A:1018875024306
  24. J. Botella, C. Merino and E. Otero: Oxid. Met., 49 (1998) 297. https://doi.org/10.1023/A:1018830424480
  25. F. J. Perez, M. J. Cristobal, G. Arnau, M. P. Hierro and J. J. Saura: Oxid. Met., 55 (2001) 105. https://doi.org/10.1023/A:1010329310030