Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.2.110

High Temperature Oxidation Behavior of 316L Austenitic Stainless Steel Manufactured by Laser Powder Bed Fusion Process  

Hwang, Yu-Jin (Department of Materials Science and Engineering, Inha University)
Wi, Dong-Yeol (Department of Materials Science and Engineering, Inha University)
Kim, Kyu-Sik (Department of Materials Science and Engineering, Inha University)
Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
Publication Information
Journal of Powder Materials / v.28, no.2, 2021 , pp. 110-119 More about this Journal
Abstract
In this study, the high-temperature oxidation properties of austenitic 316L stainless steel manufactured by laser powder bed fusion (LPBF) is investigated and compared with conventional 316L manufactured by hot rolling (HR). The initial microstructure of LPBF-SS316L exhibits a molten pool ~100 ㎛ in size and grains grown along the building direction. Isotropic grains (~35 ㎛) are detected in the HR-SS316L. In high-temperature oxidation tests performed at 700℃ and 900℃, LPBF-SS316L demonstrates slightly superior high-temperature oxidation resistance compared to HR-SS316L. After the initial oxidation at 700℃, shown as an increase in weight, almost no further oxidation is observed for both materials. At 900℃, the oxidation weight displays a parabolic trend and both materials exhibit similar behavior. However, at 1100℃, LPBF-SS316L oxidizes in a parabolic manner, but HR-SS316L shows a breakaway oxidation behavior. The oxide layers of LPBF-SS316L and HR-SS316L are mainly composed of Cr2O3, Fe-based oxides, and spinel phases. In LPBF-SS316L, a uniform Cr depletion region is observed, whereas a Cr depletion region appears at the grain boundary in HR-SS316L. It is evident from the results that the microstructure and the high-temperature oxidation characteristics and behavior are related.
Keywords
Stainless steel 316L; Additive manufacturing; Microstructure; High temperature oxidation; Oxidation behavior;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Leal, F. M. Barreiros, L. Alves, F. Romeiro, J. C. Vasco, M. Santos and C. Marto: Int. J. Adv. Manuf. Tech., 92 (2017) 1671.   DOI
2 J. P. Pragana, P. Pombinha, V. R. Duarte, T. A. Rodrigues, J. P. Oliveira, I. M .Braganca, T. G. Santos, R. M. Miranda, L. Coutinho and C. M. Silva: Proc. IME B J. Eng. Manufact., 234 (2020) 1246.
3 G. R. Holcomb and D. E. Alman: Scr. Mater., 54 (2006) 1821.   DOI
4 J. Zurek, D. J. Young, E. Essuman, M. Hansel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers: Mater. Sci. Eng. A, 477 (2008) 259.   DOI
5 L. F. Liu, S. S. Wu, Y. Chen and S. L. Lu: Trans. Nonferrous Met. Soc. China, 26 (2016) 1163.   DOI
6 G. R. Wallwork: Rep. Progr. Phys., 39 (1975) 401.   DOI
7 D. Kong, C. Dong, S. Wei, X. Ni, L. Zhang, R. Li, L. Wang, C. Man and X. Li: Addit. Manuf., 38 (2021) 101804.
8 X. Cheng, Z. Jiang, D. Wei, J. Zhao, B. J. Monaghan, R. J. Longbottom and L. Jiang: Met. Mater. Int., 21 (2015) 251.   DOI
9 H. J. Grabke, E. M. Muller-Lorenz, S. Strauss, E. Pippel and J. Woltersdorf: Oxid. Met., 50 (1998) 241.   DOI
10 M. R. Ardigo-Besnard, I. Popa, O. Heintz, R. Chassagnon, M. Vilasi, F. Herbst, P. Girardon and S. Chevalier: Appl. Surf. Sci., 412 (2017) 196.   DOI
11 P. I. Pradeep, V. A. Kumar, A. Sriranganath, S. K. Singh, A. Sahu, T. S. Kumar, P. R. Narayanan, M. Arumugam and M. Mohan: Trans. Indian Natl. Acad. Eng., 5 (2020) 603.   DOI
12 C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh and S. L. Sing: Appl. Phys. Rev., 2 (2015) 041101.   DOI
13 B. Song, X. Zhao, S. Li, C. Han, Q. Wei, S. Wen, J. Liu and Y. Shi: Front. Mech. Eng., 10 (2015) 111.   DOI
14 C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh and S. L. Sing: Appl. Phys. Rev., 2 (2015) 041101.   DOI
15 R. Velu, T. Calais, A. Jayakumar and F. Raspall: Materials, 13 (2020) 92.   DOI
16 S. G. Sarvankar and S. N. Yewale: Int. J. Res. Aeronaut. Mech. Eng., 7 (2019) 1.
17 Y. Zhong, L. E. Rannar, L. Liu, A. Koptyug, S. Wikman, J. Olsen, D. Cui and Z. Shen: J. Nucl. Mater., 486 (2017) 234.   DOI
18 M. Marya, V. Singh, S. Marya and J. Y. Hascoet: Metall. Mater. Trans. B, 46 (2015) 1654.   DOI
19 X. Huang, K. Xiao, X. Fang, Z. Xiong, L. Wei, P. Zhu and X. Li: Mater. Res. Express, 7 (2020) 066517.   DOI
20 M. S. Pham, B. Dovgyy and P. A. Hooper: Mater. Sci. Eng. A, 704 (2017) 102.   DOI
21 Z. Sun, X. Tan, S. B. Tor and W. Y. Yeong: Mater. Des., 104 (2016) 197.   DOI
22 R. B. Song, J. Y. Xiang and D. P. Hou: J. Iron Steel Res. Int., 18 (2011) 53.
23 B. Cai, Y. Liu, X. Tian, F. Wang, H. Li and R. Ji: Corros. Sci., 52 (2010) 3235.   DOI
24 S. Benafia, D. Retraint, S. Y. Brou, B. Panicaud and J. G. Poussard: Corros. Sci., 136 (2018) 188.   DOI
25 O. Andreau, E. Pessard, I. Koutiri, P. Peyre and N. Saintier: Int. J. Fatig., 143 (2021) 105930.   DOI
26 E. Frutos, P. Adeva, J. L. Gonzalez-Carrasco and P. Perez: Surf. Coatings Tech., 236 (2013) 188.   DOI
27 K. A. Habib, M. S. Damra, J. J. Saura, I. Cervera and J. Belles: Int. J. Corrosion, 2011 (2011) 1.
28 R. Wonneberger, S. Lippmann, B. Abendroth, A. Carlsson, M. Seyring, M. Rettenmayr and A. Undisz: Corros. Sci., 175 (2020) 108884.   DOI
29 M. Li, X. Zhang, W. Y. Chen and T. S. Byun: J. Nucl. Mater., 548 (2021) 152847.   DOI
30 T. Ronneberg, C. M. Davies and P. A. Hooper: Mater. Des., 189 (2020) 108481.   DOI
31 C. Siri, I. Popa, A. Vion, C. Langlade and S. Chevalier: Oxid. Met., 94 (2020) 527.   DOI
32 J. L. Bartlett and X. Li: Addit. Manuf., 27 (2019) 131.
33 S. D. Lee and G. M. Kim: J. Corros. Sci. Soc. Korea, 30 (2001) 326.
34 T. Gheno, D. Monceau and D. J. Young: Corros. Sci., 64 (2012) 222.