DOI QR코드

DOI QR Code

High Temperature Oxidation Behavior of 316L Austenitic Stainless Steel Manufactured by Laser Powder Bed Fusion Process

Laser powder bed fusion 공정으로 제조된 오스테나이트계 316L 스테인레스 강의 고온 산화 거동

  • Hwang, Yu-Jin (Department of Materials Science and Engineering, Inha University) ;
  • Wi, Dong-Yeol (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Kyu-Sik (Department of Materials Science and Engineering, Inha University) ;
  • Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
  • 황유진 (인하대학교 신소재공학과) ;
  • 위동열 (인하대학교 신소재공학과) ;
  • 김규식 (인하대학교 신소재공학과) ;
  • 이기안 (인하대학교 신소재공학과)
  • Received : 2021.03.31
  • Accepted : 2021.04.19
  • Published : 2021.04.28

Abstract

In this study, the high-temperature oxidation properties of austenitic 316L stainless steel manufactured by laser powder bed fusion (LPBF) is investigated and compared with conventional 316L manufactured by hot rolling (HR). The initial microstructure of LPBF-SS316L exhibits a molten pool ~100 ㎛ in size and grains grown along the building direction. Isotropic grains (~35 ㎛) are detected in the HR-SS316L. In high-temperature oxidation tests performed at 700℃ and 900℃, LPBF-SS316L demonstrates slightly superior high-temperature oxidation resistance compared to HR-SS316L. After the initial oxidation at 700℃, shown as an increase in weight, almost no further oxidation is observed for both materials. At 900℃, the oxidation weight displays a parabolic trend and both materials exhibit similar behavior. However, at 1100℃, LPBF-SS316L oxidizes in a parabolic manner, but HR-SS316L shows a breakaway oxidation behavior. The oxide layers of LPBF-SS316L and HR-SS316L are mainly composed of Cr2O3, Fe-based oxides, and spinel phases. In LPBF-SS316L, a uniform Cr depletion region is observed, whereas a Cr depletion region appears at the grain boundary in HR-SS316L. It is evident from the results that the microstructure and the high-temperature oxidation characteristics and behavior are related.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 첨단 신소재 기반 3D 프린팅 전문인력양성 사업(P0002007)의 지원으로 수행되었으며 이에 감사드립니다.

References

  1. C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh and S. L. Sing: Appl. Phys. Rev., 2 (2015) 041101. https://doi.org/10.1063/1.4935926
  2. B. Song, X. Zhao, S. Li, C. Han, Q. Wei, S. Wen, J. Liu and Y. Shi: Front. Mech. Eng., 10 (2015) 111. https://doi.org/10.1007/s11465-015-0341-2
  3. C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh and S. L. Sing: Appl. Phys. Rev., 2 (2015) 041101. https://doi.org/10.1063/1.4935926
  4. P. I. Pradeep, V. A. Kumar, A. Sriranganath, S. K. Singh, A. Sahu, T. S. Kumar, P. R. Narayanan, M. Arumugam and M. Mohan: Trans. Indian Natl. Acad. Eng., 5 (2020) 603. https://doi.org/10.1007/s41403-020-00159-x
  5. R. Leal, F. M. Barreiros, L. Alves, F. Romeiro, J. C. Vasco, M. Santos and C. Marto: Int. J. Adv. Manuf. Tech., 92 (2017) 1671. https://doi.org/10.1007/s00170-017-0239-8
  6. S. G. Sarvankar and S. N. Yewale: Int. J. Res. Aeronaut. Mech. Eng., 7 (2019) 1.
  7. R. Velu, T. Calais, A. Jayakumar and F. Raspall: Materials, 13 (2020) 92. https://doi.org/10.3390/ma13010092
  8. Y. Zhong, L. E. Rannar, L. Liu, A. Koptyug, S. Wikman, J. Olsen, D. Cui and Z. Shen: J. Nucl. Mater., 486 (2017) 234. https://doi.org/10.1016/j.jnucmat.2016.12.042
  9. M. Marya, V. Singh, S. Marya and J. Y. Hascoet: Metall. Mater. Trans. B, 46 (2015) 1654. https://doi.org/10.1007/s11663-015-0310-5
  10. M. S. Pham, B. Dovgyy and P. A. Hooper: Mater. Sci. Eng. A, 704 (2017) 102. https://doi.org/10.1016/j.msea.2017.07.082
  11. Z. Sun, X. Tan, S. B. Tor and W. Y. Yeong: Mater. Des., 104 (2016) 197. https://doi.org/10.1016/j.matdes.2016.05.035
  12. R. B. Song, J. Y. Xiang and D. P. Hou: J. Iron Steel Res. Int., 18 (2011) 53.
  13. B. Cai, Y. Liu, X. Tian, F. Wang, H. Li and R. Ji: Corros. Sci., 52 (2010) 3235. https://doi.org/10.1016/j.corsci.2010.05.040
  14. S. Benafia, D. Retraint, S. Y. Brou, B. Panicaud and J. G. Poussard: Corros. Sci., 136 (2018) 188. https://doi.org/10.1016/j.corsci.2018.03.007
  15. E. Frutos, P. Adeva, J. L. Gonzalez-Carrasco and P. Perez: Surf. Coatings Tech., 236 (2013) 188. https://doi.org/10.1016/j.surfcoat.2013.09.046
  16. K. A. Habib, M. S. Damra, J. J. Saura, I. Cervera and J. Belles: Int. J. Corrosion, 2011 (2011) 1.
  17. X. Huang, K. Xiao, X. Fang, Z. Xiong, L. Wei, P. Zhu and X. Li: Mater. Res. Express, 7 (2020) 066517. https://doi.org/10.1088/2053-1591/ab96fa
  18. R. Wonneberger, S. Lippmann, B. Abendroth, A. Carlsson, M. Seyring, M. Rettenmayr and A. Undisz: Corros. Sci., 175 (2020) 108884. https://doi.org/10.1016/j.corsci.2020.108884
  19. O. Andreau, E. Pessard, I. Koutiri, P. Peyre and N. Saintier: Int. J. Fatig., 143 (2021) 105930. https://doi.org/10.1016/j.ijfatigue.2020.105930
  20. M. Li, X. Zhang, W. Y. Chen and T. S. Byun: J. Nucl. Mater., 548 (2021) 152847. https://doi.org/10.1016/j.jnucmat.2021.152847
  21. T. Ronneberg, C. M. Davies and P. A. Hooper: Mater. Des., 189 (2020) 108481. https://doi.org/10.1016/j.matdes.2020.108481
  22. J. P. Pragana, P. Pombinha, V. R. Duarte, T. A. Rodrigues, J. P. Oliveira, I. M .Braganca, T. G. Santos, R. M. Miranda, L. Coutinho and C. M. Silva: Proc. IME B J. Eng. Manufact., 234 (2020) 1246.
  23. C. Siri, I. Popa, A. Vion, C. Langlade and S. Chevalier: Oxid. Met., 94 (2020) 527. https://doi.org/10.1007/s11085-020-10005-8
  24. J. L. Bartlett and X. Li: Addit. Manuf., 27 (2019) 131.
  25. S. D. Lee and G. M. Kim: J. Corros. Sci. Soc. Korea, 30 (2001) 326.
  26. T. Gheno, D. Monceau and D. J. Young: Corros. Sci., 64 (2012) 222.
  27. X. Cheng, Z. Jiang, D. Wei, J. Zhao, B. J. Monaghan, R. J. Longbottom and L. Jiang: Met. Mater. Int., 21 (2015) 251. https://doi.org/10.1007/s12540-015-4168-5
  28. J. Zurek, D. J. Young, E. Essuman, M. Hansel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers: Mater. Sci. Eng. A, 477 (2008) 259. https://doi.org/10.1016/j.msea.2007.05.035
  29. G. R. Holcomb and D. E. Alman: Scr. Mater., 54 (2006) 1821. https://doi.org/10.1016/j.scriptamat.2006.01.026
  30. L. F. Liu, S. S. Wu, Y. Chen and S. L. Lu: Trans. Nonferrous Met. Soc. China, 26 (2016) 1163. https://doi.org/10.1016/s1003-6326(16)64215-2
  31. G. R. Wallwork: Rep. Progr. Phys., 39 (1975) 401. https://doi.org/10.1088/0034-4885/39/5/001
  32. D. Kong, C. Dong, S. Wei, X. Ni, L. Zhang, R. Li, L. Wang, C. Man and X. Li: Addit. Manuf., 38 (2021) 101804.
  33. H. J. Grabke, E. M. Muller-Lorenz, S. Strauss, E. Pippel and J. Woltersdorf: Oxid. Met., 50 (1998) 241. https://doi.org/10.1023/A:1018888321213
  34. M. R. Ardigo-Besnard, I. Popa, O. Heintz, R. Chassagnon, M. Vilasi, F. Herbst, P. Girardon and S. Chevalier: Appl. Surf. Sci., 412 (2017) 196. https://doi.org/10.1016/j.apsusc.2017.03.280