• 제목/요약/키워드: l1-norm

검색결과 190건 처리시간 0.027초

SMALL DATA SCATTERING OF HARTREE TYPE FRACTIONAL SCHRÖDINGER EQUATIONS IN DIMENSION 2 AND 3

  • Cho, Yonggeun;Ozawa, Tohru
    • 대한수학회지
    • /
    • 제55권2호
    • /
    • pp.373-390
    • /
    • 2018
  • In this paper we study the small-data scattering of the d dimensional fractional $Schr{\ddot{o}}dinger$ equations with d = 2, 3, $L{\acute{e}}vy$ index 1 < ${\alpha}$ < 2 and Hartree type nonlinearity $F(u)={\mu}({\mid}x{\mid}^{-{\gamma}}{\ast}{\mid}u{\mid}^2)u$ with max(${\alpha}$, ${\frac{2d}{2d-1}}$) < ${\gamma}{\leq}2$, ${\gamma}$ < d. This equation is scaling-critical in ${\dot{H}}^{s_c}$, $s_c={\frac{{\gamma}-{\alpha}}{2}}$. We show that the solution scatters in $H^{s,1}$ for any s > $s_c$, where $H^{s,1}$ is a space of Sobolev type taking in angular regularity with norm defined by ${\parallel}{\varphi}{\parallel}_{H^{s,1}}={\parallel}{\varphi}{\parallel}_{H^s}+{\parallel}{\nabla}_{{\mathbb{S}}{\varphi}}{\parallel}_{H^s}$. For this purpose we use the recently developed Strichartz estimate which is $L^2$-averaged on the unit sphere ${\mathbb{S}}^{d-1}$ and utilize $U^p-V^p$ space argument.

EXTREMELY MEASURABLE SUBALGEBRAS

  • Ayyaswamy, S.K.
    • 대한수학회보
    • /
    • 제22권1호
    • /
    • pp.7-10
    • /
    • 1985
  • For each a.mem.S and f.mem.m(S), denote by $l_{a}$ f(s)=f(as) for all s.mem.S. If A is a norm closed left translation invariant subalgebra of m(S) (i.e. $l_{a}$ f.mem.A whenever f.mem.A and a.mem.S) containing 1, the constant ont function on S and .phi..mem. $A^{*}$, the dual of A, then .phi. is a mean on A if .phi.(f).geq.0 for f.geq.0 and .phi.(1) = 1, .phi. is multiplicative if .phi. (fg)=.phi.(f).phi.(g) for all f, g.mem.A; .phi. is left invariant if .phi.(1sf)=.phi.(f) for all s.mem.S and f.mem.A. It is well known that the set of multiplicative means on m(S) is precisely .betha.S, the Stone-Cech compactification of S[7]. A subalgebra of m(S) is (extremely) left amenable, denoted by (ELA)LA if it is nom closed, left translation invariant containing contants and has a multiplicative left invariant mean (LIM). A semigroup S is (ELA) LA, if m(S) is (ELA)LA. A subset E.contnd.S is left thick (T. Mitchell, [4]) if for any finite subser F.contnd.S, there exists s.mem.S such that $F_{s}$ .contnd.E or equivalently, the family { $s^{-1}$ E : s.mem.S} has finite intersection property.y.

  • PDF

CONTINUITY OF ONE-SIDED BEST SIMULTANEOUS APPROXIMATIONS

  • Lee, Mun-Bae;Park, Sung-Ho;Rhee, Hyang-Joo
    • 대한수학회보
    • /
    • 제37권4호
    • /
    • pp.743-753
    • /
    • 2000
  • In the space $C_1(X)$ of real-valued continuous functions with $L_1-norm$, every bounded set has a relative Chebyshev center in a finite-dimensional subspace S. Moreover, the set function $F\rightarrowZ_S(F)$ corresponding to F the set of its relative Chebyshev centers, in continuous on the space B[$C_1(X)$(X)] of nonempty bounded subsets of $C_1(X)$ (X) with the Hausdorff metric. In particular, every bounded set has a relative Chebyshev center in the closed convex set S(F) of S and the set function $F\rightarrowZ_S(F)$(F) is continuous on B[$C_1(X)$ (X)] with a condition that the sets S(.) are equal.

  • PDF

STRONG CONVERGENCE OF THE MODIFIED HYBRID STEEPEST-DESCENT METHODS FOR GENERAL VARIATIONAL INEQUALITIES

  • Yao, Yonghong;Noor, Muhammad Aslam
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.179-190
    • /
    • 2007
  • In this paper, we consider the general variational inequality GVI(F, g, C), where F and g are mappings from a Hilbert space into itself and C is the fixed point set of a nonexpansive mapping. We suggest and analyze a new modified hybrid steepest-descent method of type method $u_{n+l}=(1-{\alpha}+{\theta}_{n+1})Tu_n+{\alpha}u_n-{\theta}_{n+1g}(Tu_n)-{\lambda}_{n+1}{\mu}F(Tu_n),\;n{\geq}0$. for solving the general variational inequalities. The sequence $\{x_n}\$ is shown to converge in norm to the solutions of the general variational inequality GVI(F, g, C) under some mild conditions. Application to constrained generalized pseudo-inverse is included. Results proved in the paper can be viewed as an refinement and improvement of previously known results.

Note on the Inverse Metric Traveling Salesman Problem Against the Minimum Spanning Tree Algorithm

  • Chung, Yerim
    • Management Science and Financial Engineering
    • /
    • 제20권1호
    • /
    • pp.17-19
    • /
    • 2014
  • In this paper, we consider an interesting variant of the inverse minimum traveling salesman problem. Given an instance (G, w) of the minimum traveling salesman problem defined on a metric space, we fix a specified Hamiltonian cycle $HC_0$. The task is then to adjust the edge cost vector w to w' so that the new cost vector w' satisfies the triangle inequality condition and $HC_0$ can be returned by the minimum spanning tree algorithm in the TSP-instance defined with w'. The objective is to minimize the total deviation between the original and the new cost vectors with respect to the $L_1$-norm. We call this problem the inverse metric traveling salesman problem against the minimum spanning tree algorithm and show that it is closely related to the inverse metric spanning tree problem.

Quantile Regression with Non-Convex Penalty on High-Dimensions

  • Choi, Ho-Sik;Kim, Yong-Dai;Han, Sang-Tae;Kang, Hyun-Cheol
    • Communications for Statistical Applications and Methods
    • /
    • 제16권1호
    • /
    • pp.209-215
    • /
    • 2009
  • In regression problem, the SCAD estimator proposed by Fan and Li (2001), has many desirable property such as continuity, sparsity and unbiasedness. In this paper, we extend SCAD penalized regression framework to quantile regression and hence, we propose new SCAD penalized quantile estimator on high-dimensions and also present an efficient algorithm. From the simulation and real data set, the proposed estimator performs better than quantile regression estimator with $L_1$ norm.

L2-NORM ERROR ANALYSIS OF THE HP-VERSION WITH NUMERICAL INTEGRATION

  • Kim, Ik-Sung
    • 대한수학회보
    • /
    • 제39권1호
    • /
    • pp.9-22
    • /
    • 2002
  • We consider the hp-version to solve non-constant coefficient elliptic equations with Dirichlet boundary conditions on a bounded, convex polygonal domain $\Omega$ in $R^{2}.$ To compute the integrals in the variational formulation of the discrete problem we need the numerical quadrature rule scheme. In this paler we consider a family $G_{p}= {I_{m}}$ of numerical quadrature rules satisfying certain properties. When the numerical quadrature rules $I_{m}{\in}G_{p}$ are used for calculating the integrals in the stiffness matrix of the variational form we will give its variational fore and derive an error estimate of ${\parallel}u-\tilde{u}^h_p{\parallel}_0,{\Omega}'$.

혼합정수 선형계획법 기반의 비선형 패턴 분류 기법 (An MILP Approach to a Nonlinear Pattern Classification of Data)

  • 김광수;류홍서
    • 대한산업공학회지
    • /
    • 제32권2호
    • /
    • pp.74-81
    • /
    • 2006
  • In this paper, we deal with the separation of data by concurrently determined, piecewise nonlinear discriminant functions. Toward the end, we develop a new $l_1$-distance norm error metric and cast the problem as a mixed 0-1 integer and linear programming (MILP) model. Given a finite number of discriminant functions as an input, the proposed model considers the synergy as well as the individual role of the functions involved and implements a simplest nonlinear decision surface that best separates the data on hand. Hence, exploiting powerful MILP solvers, the model efficiently analyzes any given data set for its piecewise nonlinear separability. The classification of four sets of artificial data demonstrates the aforementioned strength of the proposed model. Classification results on five machine learning benchmark databases prove that the data separation via the proposed MILP model is an effective supervised learning methodology that compares quite favorably to well-established learning methodologies.

A Fourth-Order Accurate Numerical Boundary Scheme for the Planar Dielectric Interface: a 2-D TM Case

  • Hwang, Kyu-Pyung
    • Journal of electromagnetic engineering and science
    • /
    • 제11권1호
    • /
    • pp.11-15
    • /
    • 2011
  • Preserving high-order accuracy in high-order FDTD solutions across dielectric interfaces is very important for practical time-domain electromagnetic simulations. This paper presents a fourth-order accurate numerical boundary scheme for the planar dielectric interface to be used in the fourth-order FDTD method proposed earlier by the author. The interface scheme for the two-dimensional (2-D) transverse magnetic (TM) polarization case is derived and validated by monitoring the $L_2$ norm errors in the numerical solutions of a partially-filled cavity demonstrating its fourth-order convergence and long-time numerical stability in the presence of the planar dielectric interface.

STRUCTURAL PROJECTIONS ON A JBW-TRIPLE AND GL-PROJECTIONS ON ITS PREDUAL

  • Hugli, Remo-V.
    • 대한수학회지
    • /
    • 제41권1호
    • /
    • pp.107-130
    • /
    • 2004
  • A $JB^{*}-triple$ is a Banach space A on which the group Aut(B) of biholomorphic automorphisms acts transitively on the open unit ball B of A. In this case, a triple product {$\cdots$} from $A\;\times\;A\;\times\;A\;to\;A$ can be defined in a canonical way. If A is also the dual of some Banach space $A_{*}$, then A is said to be a JBW triple. A projection R on A is said to be structural if the identity {Ra, b, Rc} = R{a, Rb, c, }holds. On $JBW^{*}-triples$, structural projections being algebraic objects by definition have also some interesting metric properties, and it is possible to give a full characterization of structural projections in terms of the norm of the predual $A_{*}$ of A. It is shown, that the class of structural projections on A coincides with the class of the adjoints of neutral GL-projections on $A_{*}$. Furthermore, the class of GL-projections on $A_{*}$ is naturally ordered and is completely ortho-additive with respect to L-orthogonality.