SMALL DATA SCATTERING OF HARTREE TYPE FRACTIONAL SCHRÖDINGER EQUATIONS IN DIMENSION 2 AND 3

Yonggeun Cho and Tohru Ozawa

Abstract

In this paper we study the small-data scattering of the d dimensional fractional Schrödinger equations with $d=2$, 3, Lévy index $1<\alpha<2$ and Hartree type nonlinearity $F(u)=\mu\left(|x|^{-\gamma} *|u|^{2}\right) u$ with $\max \left(\alpha, \frac{2 d}{2 d-1}\right)<\gamma \leq 2, \gamma<d$. This equation is scaling-critical in $\dot{H}^{s_{c}}$, $s_{c}=\frac{\gamma-\alpha}{2}$. We show that the solution scatters in $H^{s, 1}$ for any $s>s_{c}$, where $H^{s, 1}$ is a space of Sobolev type taking in angular regularity with norm defined by $\|\varphi\|_{H^{s, 1}}=\|\varphi\|_{H^{s}}+\left\|\nabla_{\mathbb{S}} \varphi\right\|_{H^{s}}$. For this purpose we use the recently developed Strichartz estimate which is L^{2}-averaged on the unit sphere \mathbb{S}^{d-1} and utilize $U^{p}-V^{p}$ space argument.

1. Introduction

In this paper we consider the following Cauchy problem for Hartree type fractional Schrödinger equations of the form:

$$
\left\{\begin{array}{l}
i \partial_{t} u=D^{\alpha} u+F(u) \text { in } \mathbb{R}^{1+d} \tag{1.1}\\
u(x, 0)=\varphi(x) x \in \mathbb{R}^{d}
\end{array}\right.
$$

where $D^{\alpha}=(-\Delta)^{\frac{\alpha}{2}}, 1<\alpha<2, d=2,3$ and $F(u)=\left[V *|u|^{2}\right] u$ with $V=\mu|x|^{-\gamma}, 0<\gamma<d, \mu \in \mathbb{R} \backslash\{0\}$. The equation (1.1) has the scaling invariance structure in $\dot{H}^{s_{c}}, s_{c}=\frac{\gamma-\alpha}{2}$. Some basic notations are listed at the end of this section.

By Duhamel's formula, (1.1) is written as an integral equation

$$
\begin{equation*}
u=e^{-i t D^{\alpha}} \varphi-i \int_{0}^{t} e^{-i\left(t-t^{\prime}\right) D^{\alpha}}\left(F\left(u\left(t^{\prime}\right)\right)\right) d t^{\prime} \tag{1.2}
\end{equation*}
$$

[^0]Here we define the linear propagator $e^{-i t D^{\alpha}}$ given by the solution to the linear problem $i \partial_{t} v=D^{\alpha} v$ with initial datum $v(0)=f$. It is formally given by

$$
\begin{equation*}
e^{-i t D^{\alpha}} f=\mathcal{F}^{-1}\left(e^{-i t|\xi|^{\alpha}} \mathcal{F}(f)\right)=(2 \pi)^{-d} \int_{\mathbb{R}^{d}} e^{i\left(x \cdot \xi-t|\xi|^{\alpha}\right)} \widehat{f}(\xi) d \xi \tag{1.3}
\end{equation*}
$$

where $\widehat{f}=\mathcal{F}(f)$ denotes the Fourier transform of f and \mathcal{F}^{-1} the inverse Fourier transform such that

$$
\mathcal{F}(f)(\xi)=\int_{\mathbb{R}^{d}} e^{-i x \cdot \xi} f(x) d x, \quad \mathcal{F}^{-1}(g)(x)=(2 \pi)^{-d} \int_{\mathbb{R}^{d}} e^{i x \cdot \xi} g(\xi) d \xi
$$

The fractional Schrödinger equations have been derived to describe natural phenomena for the system of long-range lattice interaction $(1<\alpha<2)$ [16], water waves $\left(\alpha=\frac{1}{2}, \frac{3}{2}\right)$ [19], and fractional quantum mechanics $(1<\alpha<2)$ [18]. We are concerned with small-data scattering theory of (1.1). In this paper the notion of scattering is defined as follows.
Definition 1.1. We say that a solution u to (1.1) scatters (to $u_{ \pm}$) in a Hilbert space \mathcal{H} if there exist $\varphi_{ \pm} \in \mathcal{H}$ (with $\left.u_{ \pm}(t)=e^{-i t D^{\alpha}} \varphi_{ \pm}\right)$such that $\lim _{t \rightarrow \pm \infty}\left\|u(t)-u_{ \pm}\right\|_{\mathcal{H}}=0$.

There have been several scattering results for the Hartree type nonlinearity only for $d \geq 3$. The small data scattering can be obtained by Strichartz estimates $[2,3]$ as $\gamma>2$ and by weighted space estimates $[1,9]$ as $1<\gamma \leq 2$. In the weighted space regime one can take advantage of the smoothing effect of Hartree potential in the high frequency analysis. However, we have to pay the cost $d \geq 3$ and high regularity for using the smoothing of ∇V. To resolve the 2 D or low regularity problem a different approach is required. The authors of this paper treated the cubic problem $F(u)=\mu|u|^{2} u$ for $d \geq 3$ in [3,4] by using $U^{p}-V^{p}$ space argument based on the endpoint Strichartz estimates which is angularly averaged. In this paper we apply the $U^{p}-V^{p} \operatorname{argument}$ to the 2,3 -d Hartree problem.

To state the main theorem let us introduce angularly regular Sobolev space $H^{s, 1}$. It is the set of all H^{s} functions whose angular derivative is also in H^{s}. The norm is defined by $\|f\|_{H^{s, 1}}:=\|f\|_{H^{s}}+\left\|\nabla_{\mathbb{S}} f\right\|_{H^{s}}$. Here $\nabla_{\mathbb{S}}$ is the gradient on the unit sphere and it can also be represented as $x \times \nabla$.
Theorem 1.2. Let $d=2,3,1<\alpha<2, \max \left(\alpha, \frac{2 d}{2 d-1}\right)<\gamma \leq 2, \gamma<d$ and let $s>s_{c}$. Then there exists $\delta>0$ such that for any $\varphi \in H^{s, 1}$ with $\|\varphi\|_{H^{s, 1}} \leq \delta$, (1.1) has a unique solution $u \in\left(C \cap L^{\infty}\right)\left(\mathbb{R} ; H^{s, 1}\right)$ which scatters in $H^{s, 1}$.

We show Theorem 1.2 essentially on the basis of the nonlinear estimates, namely Proposition 4.1 below. The crucial part of the nonlinear estimate occurs in the case where high-high frequency interactions make low frequency outputs. Such case does not occur in the cubic problem. Thanks to the radial lemmas (Lemma 2.8 and Lemma 2.9 below) and endpoint Strichartz estimates ((2.1), (2.2), (2.3) below) we can circumvent the singularity in the low frequency part in case that $\frac{2 d}{2 d-1}<\alpha<2, \alpha<\gamma<2$ for $d=2$ and $\alpha<\gamma \leq 2$ for $d=3$.

The subcritical condition $s>s_{c}$ is necessary for the summability of square sum (3.2). If we consider the initial data in the Besov space $B_{2,1}^{s_{c}, 1}$ with norm defined by $\|\varphi\|_{B_{2,1}^{s, 1}}=\|\varphi\|_{B_{2,1}^{s c}}+\left\|\nabla_{\mathbb{S}} \varphi\right\|_{B_{2,1}^{s c}}$, one can easily get the small data GWP in $B_{2,1}^{s_{c}, 1}$ and scattering in $H^{s_{c}, 1}$. See Remark 1 below.

The scattering in the sense of Definition 1.1 does not occur in the long-range case $0<\gamma<1$ (see [8]). For the critical case $\gamma=1$ it is highly expected that a modified scattering will occur. In fact, it turns out to be true for the 3-d case when α is close enough to 2 (see [5]). The short-range case $1<\gamma \leq \alpha$ still remains open. These two issues deserves to be taken into account within a regime of weighted spaces or $U^{p}-V^{p}$ spaces.

Due to the lack of analysis technique for high-high-low case, the mass critical case $\gamma=\alpha$ is not attained by the current argument. But one can think of a modification of potential near zero frequency as in $[1,3]$. Here let us consider a potential V in the sense:
(H) V is radial and smooth functions on $\mathbb{R}^{d} \backslash\{0\}$ such that for any nonnegative integers k

$$
\begin{aligned}
& \left|\nabla_{\xi}^{k}(\widehat{V}(\xi))\right| \lesssim|\xi|^{-\left(d-\alpha_{+}\right)-k} \text { for }|\xi| \leq 1, \\
& \left|\nabla_{\xi}^{k}(\widehat{V}(\xi))\right| \lesssim|\xi|^{-(d-\alpha)-k} \text { for }|\xi| \geq 1,
\end{aligned}
$$

where $\alpha_{+}=\alpha+\varepsilon$ for an arbitrarily small $\varepsilon>0$. The Yukawa potential $V=\mu \frac{e^{-m|x|}}{|x|}(m>0)$ is of type (\mathbf{H}) since $\widehat{V}(\xi)=4 \pi \mu\left(m^{2}+|\xi|^{2}\right)^{-1}$.

Now we introduce the second scattering result concerning the hybrid type potential.

Theorem 1.3. Let $d=2,3$ and $\frac{2 d}{2 d-1}<\alpha<2$. Suppose that V satisfies (\mathbf{H}). If $\varphi \in H^{s, 1}$ for some $s>\frac{\alpha_{+}-\alpha}{2}$ and $\|\varphi\|_{H^{s, 1}}$ is sufficiently small, then there exists a unique solution $u \in\left(C \cap L^{\infty}\right)\left(\mathbb{R} ; H^{s, 1}\right)$ which scatters in $H^{s, 1}$.

This paper is organized as follows: In Section 2 we give several preliminary lemmas on 2-d endpoint Strichartz estimates, $U^{p}-V^{p}$ space, and radial functions. We prove Theorem 1.2 in Section 3 via nonlinear estimates. In Section 4 we provide a proof for the crucial nonlinear estimate. In the last section we prove Theorem 1.3.

Basic notations.

- Littlewood-Paley operators: (1) Homogeneous type. $\dot{\beta} \in C_{0, \text { rad }}^{\infty}$ with $\dot{\beta} \ddot{\beta}=\dot{\beta}$ and $\ddot{\beta}(\xi)=\dot{\beta}(\xi / 2)+\dot{\beta}(\xi)+\dot{\beta}(2 \xi)$. $\mathcal{F}\left(\dot{P}_{N} f\right)(\xi)=\dot{\beta}(\xi / N) \widehat{f}$ for any dyadic number N. Let $\ddot{P}_{N}=\dot{P}_{N / 2}+\dot{P}_{N}+\dot{P}_{2 N}$. Then $\dot{P}_{N} \ddot{P}_{N}=\dot{P}_{N}$. (2) Inhomogeneous type. $P_{1}=1-\sum_{N>1} \dot{P}_{N}$ and $P_{N}=\dot{P}_{N}$ for $N>1$.
- Fractional derivatives: $D^{s}=(-\Delta)^{\frac{s}{2}}=\mathcal{F}^{-1}|\xi|^{s} \mathcal{F}, \Lambda^{s}=(1-\Delta)^{\frac{s}{2}}=\mathcal{F}^{-1}(1+$ $\left.|\xi|^{2}\right)^{\frac{s}{2} \mathcal{F}}$ for $s>0$.
- Function spaces: $\dot{H}_{r}^{s}=D^{-s} L^{r}, \dot{H}^{s}=\dot{H}_{2}^{s}, H_{r}^{s}=\Lambda^{-s / 2} L^{r}, H^{s}=H_{2}^{s}$, $L^{r}=L_{x}^{r}\left(\mathbb{R}^{d}\right)$ for $s \in \mathbb{R}$ and $1 \leq r \leq \infty$. The Besov space $B_{p, q}^{s}$ is defined by the norm $\|f\|_{B_{p, q}^{s}}=\left(\sum_{N \geq 1} N^{q s}\left\|P_{N} f\right\|_{L_{x}^{p}}^{q}{ }^{\frac{1}{q}}\right.$ for $s \in \mathbb{R}, 1 \leq p, q \leq \infty$.
- Mixed-normed spaces: For a Banach space $X, u \in L_{I}^{q} X$ if and only if $u(t) \in$ X for a.e. $t \in I$ and $\|u\|_{L_{I}^{q} X}:=\| \| u(t)\left\|_{X}\right\|_{L_{I}^{q}}<\infty$. Especially, we denote $L_{I}^{q} L_{x}^{r}=L_{t}^{q}\left(I ; L_{x}^{r}\left(\mathbb{R}^{d}\right)\right), L_{I, x}^{q}=L_{I}^{q} L_{x}^{q}$ and $L_{t}^{q} L_{x}^{r}=L_{\mathbb{R}}^{q} L_{x}^{r}$.
- As usual different positive constants depending only on d, α are denoted by the same letter C, if not specified. $A \lesssim B$ and $A \gtrsim B$ means that $A \leq C B$ and $A \geq C^{-1} B$, respectively for some $C>0 . A \sim B$ means that $A \lesssim B$ and $A \gtrsim B$.

2. Preliminaries

2.1. Strichartz estimates

Let the pair (q, r) satisfy that $2 \leq q, r \leq \infty, \frac{2}{q}+\frac{d}{r}=\frac{d}{2}$ and $(q, r, d) \neq$ $(2, \infty, 2)$. Then we have for any $0<\alpha \neq 1<2$ that

$$
\begin{equation*}
N^{-\frac{2-\alpha}{q}}\left\|e^{-i t D^{\alpha}} \dot{P}_{N} \varphi\right\|_{L_{t}^{q} L_{x}^{r}} \lesssim\left\|\dot{P}_{N} \varphi\right\|_{L_{x}^{2}} \tag{2.1}
\end{equation*}
$$

For this see [10].
The endpoint estimate can be extended to a wider range provided an angular average is taken into account. More precisely, let $d=2,3,1<\alpha<2$, and let $6<r \leq \infty, r_{*}=2$ if $d=2$ and $\frac{10}{3}<r<6,2<r_{*}<\frac{4 r}{10-r}$ if $d=3$. Then there holds

$$
\begin{equation*}
N^{-\frac{d-\alpha}{2}+\frac{d}{r}}\left\|e^{-i t D^{\alpha}} \dot{P}_{N} \varphi\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{r_{*}}} \lesssim\left\|\dot{P}_{N} \varphi\right\|_{L_{x}^{2}} \tag{2.2}
\end{equation*}
$$

In particular, if $\frac{2 d}{d-\alpha}<r<\frac{2 d}{d-2}$, then we have from (2.2) that

$$
\begin{align*}
\left\|e^{-i t D^{\alpha}} P_{1} \varphi\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{r *}} & \lesssim \sum_{0<N \leq 1}\left\|e^{-i t D^{\alpha}} \dot{P}_{N} \varphi\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{r_{*}}} \tag{2.3}\\
& \lesssim \sum_{0<N \leq 1} N^{\frac{d-\alpha}{2}-\frac{d}{r}}\left\|\dot{P}_{N} \varphi\right\|_{L_{x}^{2}} \lesssim\left\|P_{1} \varphi\right\|_{L_{x}^{2}}
\end{align*}
$$

Here the norm $L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{r_{*}}$ with $r<\infty$ is defined by

$$
\|u\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{r_{*}}}=\left(\int_{\mathbb{R}}\left\|\left(\int_{S^{d-1}}|u(t, \rho \theta)|^{r_{*}} d \theta\right)^{\frac{1}{r_{*}}}\right\|_{L_{\rho}^{r}\left(\rho^{d-1} d \rho\right)}^{2}\right)^{\frac{1}{2}}
$$

If $r=\infty$, then we define $\mathcal{L}_{\rho}^{\infty}=L_{\rho}^{\infty}$. For (2.2) see Theorem 1.1 and Corollary 2.9 of [12]. See also [6,13] for some general Strichartz estimates associated with angular regularity.

2.2. U^{p} and V^{p} spaces

We list some useful properties of U^{p} and V^{p} spaces. For complete a description see $[14,17]$.

Let \mathcal{Z} be the set of all finite partitions $-\infty<t_{0}<\cdots<t_{K} \leq \infty$ of \mathbb{R}. If $t_{K}=\infty$, then we use the convention $u\left(t_{K}\right)=0$ for all functions $u: \mathbb{R} \rightarrow L_{x}^{2}$.

Definition 2.1. Let $1 \leq p<\infty$. A U^{p}-atom is defined by a step function $a: \mathbb{R} \rightarrow L_{x}^{2}$ of the form

$$
a(t)=\sum_{k=1}^{K} \chi_{\left[t_{k-1}, t_{k}\right)}(t) \phi_{k-1},
$$

where χ is the characteristic function,

$$
\left\{t_{k}\right\} \in \mathcal{Z}, \quad\left\{\phi_{k}\right\}_{k=0}^{K-1} \subset L_{x}^{2} \quad \text { with } \sum_{k=0}^{K-1}\left\|\phi_{k}\right\|_{L_{x}^{2}}^{p}=1 .
$$

The atomic space $U^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$ is defined as the set of functions $u: \mathbb{R} \rightarrow L_{x}^{2}$ of the form

$$
U^{p}\left(\mathbb{R} ; L_{x}^{2}\right)=\left\{u=\sum_{j=1}^{\infty} \lambda_{j} a_{j} \mid a_{j} \text { are } U^{p} \text {-atoms and }\left\{\lambda_{j}\right\} \in \ell^{1}\right\}
$$

with the norm

$$
\|u\|_{U^{p}}:=\inf \left\{\sum_{j=1}^{\infty}\left|\lambda_{j}\right| \mid u=\sum \lambda_{j} a_{j}\right\}
$$

Definition 2.2. Let $1 \leq p<\infty$. We define $V^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$ as the normed space of all functions $v: \mathbb{R} \rightarrow L_{x}^{2}$ such that $\lim _{t \rightarrow \pm \infty} v(t)$ exist and for which the norm

$$
\|v\|_{V^{p}}:=\sup _{\left\{t_{k}\right\} \in \mathcal{Z}}\left(\sum_{k=1}^{K}\left\|v\left(t_{k}\right)-v\left(t_{k-1}\right)\right\|_{L_{x}^{2}}^{p}\right)^{\frac{1}{p}}
$$

is finite. $V_{-}^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$ denotes the normed space of all function $v \in V^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$ with $v(-\infty)=0 . V_{-, r c}^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$ is the closed subspace of all right continuous $V_{-}^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$ functions.
Lemma 2.3. (1) $U^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$ and $V^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$ are Banach spaces.
(2) For $1 \leq p<q<\infty$ the embedding $U^{p}\left(\mathbb{R} ; L_{x}^{2}\right) \hookrightarrow U^{q}\left(\mathbb{R} ; L_{x}^{2}\right) \hookrightarrow L_{t}^{\infty} L_{x}^{2}$ is continuous.
(3) Every $u \in U^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$ is right-continuous and $\lim _{t \rightarrow-\infty} u(t)=0$.
(4) For $1 \leq p<\infty$ the embedding $U^{p}\left(\mathbb{R} ; L_{x}^{2}\right) \hookrightarrow V_{-, r c}^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$ is continuous.
(5) For $1<p<\infty\left(U^{p}\left(\mathbb{R} ; L_{x}^{2}\right)\right)^{*}=V^{p^{\prime}}\left(\mathbb{R} ; L_{x}^{2}\right)$, where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.

Let $B(u, v)$ denote the duality form between $U^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$ and $V^{p^{\prime}}\left(\mathbb{R} ; L_{x}^{2}\right)$.

Lemma 2.4. Let $1<p<\infty$. Let $u \in V_{-}^{1}\left(\mathbb{R} ; L_{x}^{2}\right)$ be absolutely continuous on compact intervals and $v \in V^{p^{\prime}}\left(\mathbb{R} ; L_{x}^{2}\right)$. Then

$$
B(u, v)=-\int_{-\infty}^{\infty}\left\langle u^{\prime}(t), v(t)\right\rangle d t
$$

Now we introduce adapted space U_{α}^{p} and V_{α}^{p} to $e^{-i t D^{\alpha}}$.
Definition 2.5. We define $U_{\alpha}^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$ as the spaces of all functions $u: \mathbb{R} \rightarrow L_{x}^{2}$ such that $e^{i t D^{\alpha}} u \in U^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$ with norm $\|u\|_{U_{\alpha}^{p}}:=\left\|e^{i t D^{\alpha}} u\right\|_{U^{p}}$. Likewise, we define $V_{\alpha}^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$ and its norm $\|v\|_{V_{\alpha}^{p}}:=\left\|e^{i t D^{\alpha}} v\right\|_{V^{p}}$.

Lemma 2.3 is extended to the spaces $U_{\alpha}^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$ and $V_{\alpha}^{p}\left(\mathbb{R} ; L_{x}^{2}\right)$.
Lemma 2.6. For any $v \in L_{t}^{\infty} L_{x}^{2}$ we have $\|v\|_{L_{t}^{\infty} L_{x}^{2}} \lesssim\|v\|_{V_{\alpha}^{2}}$.
Lemma 2.7 (Transfer principle). Let $T: L_{x}^{2} \rightarrow L_{l o c}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$ be a linear operator satisfying that

$$
\left\|T\left(e^{-i t D^{\alpha}} \phi\right)\right\|_{L_{t}^{q} X} \lesssim\|\phi\|_{L_{x}^{2}}
$$

for some $1 \leq q \leq \infty$ and a Banach space $X \subset L_{\text {loc }}^{1}$. Then

$$
\|T(u)\|_{L_{t}^{q} X} \lesssim\|u\|_{U_{\alpha}^{q}}
$$

Proof of Lemma 2.7. Without loss of generality we may assume that $e^{i t D^{\alpha}} u(t)$ is a U^{q}-atom with the partition t_{0}, \ldots, t_{K-1} and $t_{K}=\infty$. That is to say,

$$
e^{i t D^{\alpha}} u(t)=\sum_{k=1}^{K} \chi_{\left[t_{k-1}, t_{k}\right)} \phi_{k-1}
$$

for $\phi_{k} \in L^{2}$ with $\sum_{k=0}^{K-1}\left\|\phi_{k}\right\|_{L^{2}}^{q}=1$. Then we have only to show that $\|T(u)\|_{L_{t}^{q} X} \lesssim 1$. In fact, by assumption we have

$$
\begin{aligned}
\|T(u)\|_{L_{t}^{q} X}^{q} & =\left\|T\left(e^{-i t D^{\alpha}} \sum_{k=1}^{K} \chi_{\left[t_{k}-1, t_{k}\right)} \phi_{k-1}\right)\right\|_{L_{t}^{q} X}^{q} \\
& =\sum_{k=1}^{K}\left\|T\left(e^{-i t D^{\alpha}} \phi_{k-1}\right)\right\|_{L_{\left[t_{k-1}, t_{k}\right)}^{q} X}^{q} \\
& \lesssim \sum_{k=0}^{K-1}\left\|\phi_{k}\right\|_{L_{x}^{2}}^{q} \lesssim 1 .
\end{aligned}
$$

2.3. Some useful lemmata

Lemma 2.8. Let ψ, f be smooth and let ψ be radially symmetric. Then

$$
\nabla_{\mathbb{S}}(\psi * f)=\psi * \nabla_{\mathbb{S}} f
$$

Lemma 2.9 (Lemma 7.1 of [7]). If $\psi(x)$ is radially symmetric, then

$$
\|\psi * f\|_{\mathcal{L}_{\rho}^{p} L_{\theta}^{q}} \leq\|f\|_{\mathcal{L}_{\rho}^{p_{1}} L_{\theta}^{q_{1}}}\|\psi\|_{L_{x}^{p_{2}}}
$$

for all $p_{1}, p_{2}, p, q, q_{1} \in[1, \infty]$ satisfying

$$
\frac{1}{p_{1}}+\frac{1}{p_{2}}-1=\frac{1}{p}, \quad \frac{1}{q_{1}}+\frac{1}{p_{2}}-1 \leq \frac{1}{q}
$$

The next is on the convolution inequality for sequence.
Lemma 2.10. For any $f \in \ell^{1}(\mathbb{Z})$ and $g \in \ell^{2}(\mathbb{Z})$ we have

$$
\|f * g\|_{\ell^{2}(\mathbb{Z})} \leq\|f\|_{\ell^{1}(\mathbb{Z})}\|g\|_{\ell^{2}(\mathbb{Z})} .
$$

The final one is on the Sobolev inequality on the unit sphere.
Lemma 2.11. For any $d-1<\widetilde{r}<\infty$

$$
\|f\|_{L_{\theta}^{\infty}} \lesssim\|f\|_{L_{\theta}^{\tilde{r}}}+\left\|\nabla_{\mathbb{S}} f\right\|_{L_{\theta}^{\tilde{r}}}, \quad\|f\|_{L_{\theta}^{\tilde{r}}} \lesssim\|f\|_{L_{\theta}^{2}}+\left\|\nabla_{\mathbb{S}} f\right\|_{L_{\theta}^{2}}
$$

For this see [11, 20].

3. Proof of Theorem 1.2

Let us define the Banach space $X^{s, 1}$ for $s \in \mathbb{R}$ by

$$
X^{s, 1}:=\left\{u: \mathbb{R} \rightarrow L^{2} \mid P_{N} u, \nabla_{S^{2}} P_{N} u \in U_{\alpha}^{2}\left(\mathbb{R} ; L_{x}^{2}\right) \forall N \geq 1\right\}
$$

with the norm

$$
\|u\|_{X^{s, 1}}=\left(\sum_{N \geq 1} N^{2 s}\left(\left\|P_{N} u\right\|_{U_{\alpha}^{2}}+\left\|P_{N}\left(\nabla_{S^{2}} u\right)\right\|_{U_{\alpha}^{2}}\right)^{2}\right)^{\frac{1}{2}}
$$

Let $X_{+}^{s, 1}$ be the restricted space defined by

$$
X_{+}^{s, 1}=\left\{u \in C\left([0, \infty) ; H^{s}\right) \mid \chi_{[0, \infty)}(t) u(t) \in X^{s, 1}\right\}
$$

with norm $\|u\|_{X_{+}^{s, 1}}:=\left\|\chi_{[0, \infty)} u\right\|_{X^{s, 1}}$.
Let $\mathcal{D}_{+}(\delta)$ be a complete metric space $\left\{u \in X_{+}^{s, 1} \mid\|u\|_{X_{+}^{s, 1}} \leq \delta\right\}$ equipped with the metric $d(u, v):=\|u-v\|_{X_{+}^{s, 1}}$. Then we will show that the nonlinear functional $\Psi(u)=e^{-i t D^{\alpha}} \varphi+\mathcal{N}_{\alpha}(u)$ is a contraction on $\mathcal{D}_{+}(\delta)$, where

$$
\mathcal{N}_{\alpha}(u)=-i \int_{0}^{t} e^{-i\left(t-t^{\prime}\right) D^{\alpha}}\left[V *|u|^{2}\right] u d t^{\prime}
$$

We will show that if $s>s_{c}=\frac{2-\alpha}{2}$,

$$
\begin{align*}
& \left\|\mathcal{N}_{\alpha}(u)\right\|_{X_{+}^{s, 1}} \lesssim\|u\|_{X_{+}^{s, 1}}^{3}, \\
& \left\|\mathcal{N}_{\alpha}(u)-\mathcal{N}_{\alpha}(u)\right\|_{X_{+}^{s, 1}} \lesssim\left(\|u\|_{X_{+}^{s, 1}}+\|v\|_{X_{+}^{s, 1}}\right)^{2}\|u-v\|_{X_{+}^{s, 1}} \tag{3.1}
\end{align*}
$$

Clearly, $\left\|e^{-i t D^{\alpha}} \varphi\right\|_{X_{+}^{s, 1}} \lesssim\|\varphi\|_{H^{s, 1}}$ and thus we can find δ small enough for Ψ to be a contraction mapping on $\mathcal{D}_{+}(\delta)$.

Since $e^{i t D^{\alpha}} P_{N} \mathcal{N}_{\alpha}(u)$ and $e^{i t D^{\alpha}} P_{N} \nabla_{\mathbb{S}} \mathcal{N}_{\alpha}(u)$ are in $V_{-, r c}^{2}\left(\mathbb{R} ; L^{2}\right)$ from (4) of Lemma 2.3, and

$$
\sum_{N \geq 1} N^{2 s}\left(\left\|e^{i t D^{\alpha}} P_{N} \mathcal{N}_{\alpha}(u)\right\|_{V^{2}}+\left\|e^{i t D^{\alpha}} P_{N} \nabla_{\mathbb{S}} \mathcal{N}_{\alpha}(u)\right\|_{V^{2}}\right)^{2}<\infty
$$

from (3.1), $\lim _{t \rightarrow+\infty} e^{i t D^{\alpha}} \mathcal{N}_{\alpha}(u)$ exists in $H^{s, 1}$. Define a scattering state u^{+} with

$$
\varphi^{+}:=\varphi+\lim _{t \rightarrow+\infty} e^{i t D^{\alpha}} \mathcal{N}_{\alpha}(u) .
$$

By time symmetry we can argue in a similar way for the negative time. Thus we get the desired result.

Now it remains to show (3.1). Since the second part of (3.1) follows from the argument of the first part, we omit it. We may assume that $u(t)=0$ for $-\infty<t<0$. Since clearly $\int_{0}^{t} e^{i t^{\prime} D^{\alpha}} P_{N}\left[\left(V *|u|^{2}\right) u\right] d t^{\prime} \in V_{-}^{1}\left(\mathbb{R} ; L_{x}^{2}\right)$ and differentiable, from the duality form and Lemma 2.4 it follows that

$$
\begin{aligned}
\left\|P_{N} \mathcal{N}_{\alpha}(u)\right\|_{U_{\alpha}^{2}} & =\left\|e^{i t D^{\alpha}} P_{N} \mathcal{N}_{\alpha}(u)\right\|_{U^{2}}=\sup _{\|v\|_{V^{2}} \leq 1}\left|B\left(e^{i t D^{\alpha}} P_{N} \mathcal{N}_{\alpha}(u), v\right)\right| \\
& =\sup _{\|v\|_{V^{2}} \leq 1}\left|\int_{\mathbb{R}} \int_{\mathbb{R}^{d}}\left[V *|u|^{2}\right] u(t) \overline{e^{-i t D^{\alpha}} P_{N} v(t)} d x d t\right| \\
& =\sup _{\|v\|_{V_{\alpha}^{2}} \leq 1}\left|\int_{\mathbb{R}} \int_{\mathbb{R}^{d}}\left[V *|u|^{2}\right] u(t) P_{N} \overline{v(t)} d x d t\right|
\end{aligned}
$$

and similarly

$$
\left\|P_{N} \nabla_{\mathbb{S}} \mathcal{N}_{\alpha}(u)\right\|_{U_{\alpha}^{2}}=\sup _{\|v\|_{V_{\alpha}^{2} \leq 1}}\left|\int_{\mathbb{R}} \int_{\mathbb{R}^{d}} \nabla_{\mathbb{S}}\left(\left[V *|u|^{2}\right] u(t)\right) P_{N} \overline{v(t)} d x d t\right| .
$$

By Littlewood-Paley decomposition we get

$$
\begin{align*}
&\left\|\mathcal{N}_{\alpha}(u)\right\|_{X^{s, 1}}^{2} \tag{3.2}\\
& \lesssim \sum_{N \geq 1} N^{2 s}\left[\sup _{\|v\|_{V_{\alpha}^{2}} \leq 1}\left(\sum_{N_{1}, N_{2}, N_{3} \geq 1}\left|\iint\left[V * P_{N_{1}} u P_{N_{2}} \bar{u}\right] P_{N_{3}} u(t) P_{N} \overline{v(t)} d x d t\right|\right)^{2}\right. \\
&\left.+\sup _{\|v\|_{V_{\alpha}^{2}} \leq 1}\left(\sum_{N_{1}, N_{2}, N_{3} \geq 1}\left|\iint \nabla_{\mathbb{S}}\left(\left[V * P_{N_{1}} u P_{N_{2}} \bar{u}\right] P_{N_{3}} u(t)\right) P_{N} \overline{v(t)} d x d t\right|\right)^{2}\right] .
\end{align*}
$$

The nonlinear estimate (Proposition 4.1 below) yields that for any $\varepsilon>0$

$$
\begin{align*}
& \quad\left|\iint\left[V * P_{N_{1}} u P_{N_{2}} \bar{u}\right] P_{N_{3}} u(t) P_{N} \overline{v(t)} d x d t\right| \\
& \quad+\left|\iint \nabla_{\mathbb{S}}\left(\left[V * P_{N_{1}} u P_{N_{2}} \bar{u}\right] P_{N_{3}} u(t)\right) P_{N} \overline{v(t)} d x d t\right| \tag{3.3}\\
& \lesssim\left(N_{\min } N_{\text {med }}\right)^{\frac{\gamma-\alpha}{2}} \prod_{i=1}^{3}\left(\left\|P_{N_{i}} u\right\|_{U_{\alpha}^{2}}+\left\|P_{N_{i}} \nabla_{\mathbb{S}} u\right\|_{U_{\alpha}^{2}}\right),
\end{align*}
$$

where $N_{\min }=\min \left(N_{1}, N_{2}, N_{3}\right), N_{\max }=\max \left(N_{1}, N_{2}, N_{3}\right)$ and $N_{\min } \leq N_{\text {med }} \leq$ $N_{\text {max }}$. Since $\nabla_{\mathbb{S}}=x \times \nabla$ and hence $\nabla_{\mathbb{S}}(v w)=\left(\nabla_{\mathbb{S}} v\right) w+v\left(\nabla_{\mathbb{S}} w\right)$, we can apply Lemma 2.8 and Proposition 4.1 in the next section with $u_{i}=u$.

The self-mapping property (3.1) can be shown by exactly the same way as in [15]. But we brief on it for the reader's convenience. Let us split the summation of RHS of (3.2) into three parts as follows:

$$
\text { RHS of }(3.2)=: \Sigma_{1}+\Sigma_{2}+\Sigma_{3}
$$

where

$$
\Sigma_{1}=\sum_{N_{3} \sim N}, \quad \Sigma_{2}=\sum_{N_{3} \ll N}, \quad \Sigma_{3}=\sum_{N_{3} \gg N} .
$$

For Σ_{1} we use Lemma 2.10 w.r.t. N_{3}, N and Cauchy-Schwarz inequality w.r.t. N_{1}, N_{2} together with (3.3) to get

$$
\begin{aligned}
\Sigma_{1} & \leq \sum_{N \geq 1} N^{2 s}\left(\sum_{\substack{N_{1}, N_{2}, N_{3} \geq 1 \\
N_{3} \sim N}}\left(N_{1} N_{2}\right)^{\frac{\gamma-\alpha}{2}-s}\left(N_{1} N_{2}\right)^{s} \prod_{i=1}^{3}\left(\left\|P_{N_{i}} u\right\|_{U_{\alpha}^{2}}+\left\|P_{N_{i}} \nabla_{\mathbb{S}} u\right\|_{U_{\alpha}^{2}}\right)\right)^{2} \\
& \lesssim\|u\|_{X^{s, 1}}^{2}\left(\sum_{N_{1}, N_{2} \geq 1}\left(N_{1} N_{2}\right)^{\frac{\gamma-\alpha}{2}-s}\left(N_{1} N_{2}\right)^{s} \prod_{j=1}^{2}\left(\left\|P_{N_{i}} u\right\|_{U_{\alpha}^{2}}+\left\|P_{N_{i}}\left(\nabla_{\mathbb{S}} u\right)\right\|_{U_{\alpha}^{2}}\right)^{2}\right. \\
& \lesssim\|u\|_{X^{s, 1}}^{6} .
\end{aligned}
$$

For Σ_{2} and Σ_{3} we use the fact that if $N_{3} \ll N$ or $N_{3} \gg N$, then $N \lesssim$ $\max \left(N_{1}, N_{2}\right)$ or $N_{3} \lesssim \max \left(N_{1}, N_{2}\right)$, respectively. Applying Lemma 2.10 w.r.t. $\max \left(N_{1}, N_{2}\right), N$ and then Cauchy-Schwarz inequality w.r.t. $\min \left(N_{1}, N_{2}\right), N_{3}$, we get

$$
\begin{aligned}
& \Sigma_{2}+\Sigma_{3} \\
\lesssim & \sum_{N \geq 1}\left(\left(\sum_{N_{3} \ll N}+\sum_{N_{3} \gg N}\right)\left(\frac{N}{\max \left(N_{1}, N_{2}\right)}\right)^{s}\left(\min \left(N_{1}, N_{2}\right) N_{3}\right)^{\frac{\gamma-\alpha}{2}-s}\right. \\
& \left.\left(\min \left(N_{1}, N_{2}\right) N_{3}\right)^{s}\left(\max \left(N_{1}, N_{2}\right)\right)^{s} \times \prod_{i=1}^{3}\left(\left\|P_{N_{i}} u\right\|_{U_{\alpha}^{2}}+\left\|P_{N_{i}} \nabla_{\mathbb{S}} u\right\|_{U_{\alpha}^{2}}\right)\right)^{2} \\
\lesssim & \|u\|_{X^{s, 1}}^{6} .
\end{aligned}
$$

This shows (3.1) and completes the proof of Theorem 1.2.
Remark 1. Let us define the Banach space $Y^{s_{c}, 1}$ by

$$
Y^{s_{c}, 1}:=\left\{u:[0, \infty) \rightarrow L^{2} \mid P_{N} u, \nabla_{\mathbb{S}} P_{N} u \in U_{\alpha}^{2}\left(\mathbb{R} ; L_{x}^{2}\right) \forall N \geq 1\right\}
$$

with the norm

$$
\|u\|_{Y^{s, 1}}=\sum_{N \geq 1} N^{s_{c}}\left(\left\|P_{N} u\right\|_{U_{\alpha}^{2}}+\left\|P_{N}\left(\nabla_{\mathbb{S}} u\right)\right\|_{U_{\alpha}^{2}}\right)
$$

Instead of (3.2), we need to estimate

$$
\begin{align*}
& \quad\left\|\mathcal{N}_{\alpha}(u)\right\|_{Y^{s_{c}, 1}} \tag{3.4}\\
& \lesssim \\
& \sum_{N \geq 1} N^{s}\left[\sup _{\|v\|_{V_{\alpha} \leq 1}}\left(\sum_{N_{1}, N_{2}, N_{3} \geq 1}\left|\iint\left[V * P_{N_{1}} u P_{N_{2}} \bar{u}\right] P_{N_{3}} u(t) P_{N} \overline{v(t)} d x d t\right|\right)\right. \\
& \left.\quad+\sup _{\|v\|_{V_{\alpha}^{2}} \leq 1}\left(\sum_{N_{1}, N_{2}, N_{3} \geq 1}\left|\iint \nabla_{\mathbb{S}}\left(\left[V * P_{N_{1}} u P_{N_{2}} \bar{u}\right] P_{N_{3}} u(t)\right) P_{N} \overline{v(t)} d x d t\right|\right)\right] \\
& \lesssim \\
& \lesssim u \|_{Y_{+}^{s c, 1}}^{3} .
\end{align*}
$$

The main part Σ_{0} of the summation is the case $N \gg N_{3} . \Sigma_{0}=\Sigma_{1}+\Sigma_{2}+\Sigma_{3}$, where $\Sigma_{1}=\sum_{N_{1} \ll N_{2}}, \Sigma_{2}=\sum_{N_{1} \gg N_{2}}$ and $\Sigma_{3}=\sum_{N_{1} \sim N_{2}}$. If $N_{1} \ll N_{2}\left(N_{1} \gg\right.$ N_{2}), then $N_{2} \sim N\left(N_{1} \sim N\right)$, respectively, and hence by (3.3)

$$
\begin{aligned}
& \Sigma_{1}+\Sigma_{2} \\
\lesssim & \left(\sum_{\substack{N_{1}<N_{2} \\
N_{3}<N \sim N_{2}}}+\sum_{\substack{N_{1} \gg N_{2} \\
N_{3}<N \sim N_{1}}}\right) N^{s_{c}}\left(N_{1} N_{3}\right)^{s_{c}} \prod_{i=1}^{3}\left(\left\|P_{N_{i}} u\right\|_{U_{\alpha}^{2}}+\left\|P_{N_{i}}\left(\nabla_{\mathbb{S}} u\right)\right\|_{U_{\alpha}^{2}}\right. \\
\lesssim & \|u\|_{Y^{s_{c}, 1}}^{2}\left(\sum_{N_{2} \geq 1} \sum_{N \sim N_{2}} N^{s_{c}}\left(\left\|P_{N_{2}} u\right\|_{U_{\alpha}^{2}}+\left\|P_{N_{2}}\left(\nabla_{\mathbb{S}} u\right)\right\|_{U_{\alpha}^{2}}\right)\right. \\
& +\sum_{N_{1} \geq 1} \sum_{N \sim N_{1}} N^{s_{c}}\left(\left\|P_{N_{1}} u\right\|_{U_{\alpha}^{2}}+\left\|P_{N_{1}}\left(\nabla_{\mathbb{S}} u\right)\right\|_{U_{\alpha}^{2}}\right)
\end{aligned}
$$

$\lesssim\|u\|_{Y^{s_{c}, 1}}^{3}$.
If $N_{1} \sim N_{2}$, then $N \lesssim N_{1} \sim N_{2}$. Therefore

$$
\Sigma_{3} \lesssim \sum_{\substack{N_{1} \sim N_{2} \\ N_{3} \ll N_{2}}} \sum_{N \lesssim N_{2}} N^{s_{c}}\left(N_{1} N_{3}\right)^{s_{c}} \prod_{i=1}^{3}\left(\left\|P_{N_{i}} u\right\|_{U_{\alpha}^{2}}+\left\|P_{N_{i}}\left(\nabla_{\mathbb{S}} u\right)\right\|_{U_{\alpha}^{2}}\right) \lesssim\|u\|_{Y^{s_{c}, 1}}^{3}
$$

4. Nonlinear estimate

Proposition 4.1. Assume that $u_{1}, u_{2}, \nabla_{S} u_{i}(i=1,2,3) \in U_{\alpha}^{2}, v \in V_{\alpha}^{2}$. Let $\mathbf{u}_{i}=P_{N_{i}} u_{i}, \mathbf{v}=P_{N} v$ for $N_{i}, N \geq 1, i=1,2,3$ and let $\widetilde{\mathbf{u}}_{i}=\mathbf{u}_{i}$ or $\overline{\mathbf{u}_{i}}$. Then for all $N_{i}, N \geq 1$ we have

$$
\begin{align*}
& \left|\iint\left[V *\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right]\left(\nabla_{S} \widetilde{\mathbf{u}_{3}}\right) \mathbf{v} d x d t\right| \\
\lesssim & \left(N_{\min } N_{\mathrm{med}}\right)^{\frac{\gamma-\alpha}{2}} \prod_{i=1}^{2}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{S} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)\left\|\nabla_{S} \mathbf{u}_{3}\right\|_{U_{\alpha}^{2}}\|\mathbf{v}\|_{V_{\alpha}^{2}} \tag{4.1}
\end{align*}
$$

and

$$
\begin{align*}
& \left|\iint\left[V *\left(\left(\nabla_{S} \widetilde{\mathbf{u}_{1}}\right) \widetilde{\mathbf{u}_{2}}\right)\right] \widetilde{\mathbf{u}_{3}} \mathbf{v} d x d t\right| \\
\lesssim & \left(N_{\min } N_{\mathrm{med}}\right)^{\frac{\gamma-\alpha}{2}}\left\|\nabla_{S} \mathbf{u}_{1}\right\|_{U_{\alpha}^{2}} \prod_{i=2}^{3}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{S} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)\|\mathbf{v}\|_{V_{\alpha}^{2}} \tag{4.2}
\end{align*}
$$

Proof of (4.1). We may assume that $N_{1} \leq N_{2}$ by summation symmetry. By Littlewood-Paley decomposition we have

$$
\begin{aligned}
& \left|\iint\left[V *\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right]\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}}\right) \mathbf{v} d x d t\right| \\
\leq & \sum_{M>0} \mid \iint\left[\dot{P}_{M}\left(V *\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right) \ddot{P}_{M}\left(\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}}\right) \mathbf{v}\right) d x d t \mid\right. \\
= & : \sum_{M>0} \mathfrak{N}_{M}
\end{aligned}
$$

We first consider the case (123): $N_{1} \leq N_{2} \leq N_{3}$. This case can be split into two parts (i) $N_{1} \ll N_{2} \sim M$ or $N_{1} \sim N_{2} \sim M$; (ii) $N_{1} \sim N_{2} \gg M$.

Case (i) of (123). If $d=2$, then by using the embedding lemmas (Lemma 2.3 and Lemma 2.6) and the Sobolev embedding $H_{\theta}^{1}\left(\mathbb{S}^{1}\right) \hookrightarrow L_{\theta}^{\infty}\left(\mathbb{S}^{1}\right)$, we have

$$
\begin{aligned}
& \mathfrak{N}_{M} \\
\lesssim & M^{-(2-\gamma)}\left\|\dot{P}_{M}\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right\|_{L_{t}^{1} L_{x}^{\infty}}\left\|\ddot{P}_{M}\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}} \mathbf{v}\right)\right\|_{L_{t}^{\infty} L_{x}^{1}} \\
\lesssim & M^{-(2-\gamma)}\left(N_{1} N_{2}\right)^{\frac{2-\alpha}{2}} N_{1}^{\frac{-(2-\alpha)}{2}}\left\|\mathbf{u}_{1}\right\|_{L_{t}^{2} L_{x}^{\infty}} N_{2}^{\frac{-(2-\alpha)}{2}}\left\|\mathbf{u}_{2}\right\|_{L_{t}^{2} L_{x}^{\infty}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{L_{t}^{\infty} L_{x}^{2}}\|\mathbf{v}\|_{L_{t}^{\infty} L_{x}^{2}} \\
\lesssim & \left(N_{1} N_{2}\right)^{\frac{\gamma-\alpha}{2}} \prod_{i=1}^{2}\left(N_{i}^{\frac{-(2-\alpha)}{2}}\left\|\mathbf{u}_{i}\right\|_{L_{t}^{2} L_{\rho}^{\infty} L_{\theta}^{2}}+N_{i}^{\frac{-(2-\alpha)}{2}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{\infty} L_{\theta}^{2}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{U_{\alpha}^{2}}\|\mathbf{v}\|_{V_{\alpha}^{2}} .\right.
\end{aligned}
$$

Then by using Lemma 2.7 with $X=\mathcal{L}_{\rho}^{\infty} L_{\theta}^{2}$ and combining with (2.2) and (2.3), we get

$$
\mathfrak{N}_{M} \lesssim\left(N_{1} N_{2}\right)^{\frac{\gamma-\alpha}{2}} \prod_{i=1}^{2}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{U_{\alpha}^{2}}\|\mathbf{v}\|_{V_{\alpha}^{2}}
$$

Thus since for (i) of (123) $M \sim N_{2}$, we get

$$
\sum_{\text {(i) of }(123)} \mathfrak{N}_{M} \lesssim\left(N_{1} N_{2}\right)^{\frac{\gamma-\alpha}{2}} \prod_{i=1}^{2}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{U_{\alpha}^{2}}\|\mathbf{v}\|_{V_{\alpha}^{2}}
$$

If $d=3$, then by Bernstein's inequality we have

$$
\begin{aligned}
\mathfrak{N}_{M} & \lesssim M^{-(3-\gamma)}\left\|\dot{P}_{M}\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right\|_{L_{t}^{1} L_{x}^{\infty}}\left\|\ddot{P}_{M}\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}} \mathbf{v}\right)\right\|_{L_{t}^{\infty} L_{x}^{1}} \\
& \lesssim M^{-(3-\gamma)} M\left\|\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right\|_{L_{t}^{1} L_{x}^{3}}\left\|\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}} \mathbf{v}\right\|_{L_{t}^{\infty} L_{x}^{1}}
\end{aligned}
$$

Then the endpoint Strichartz estimate of (2.1) and Lemma 2.7 with $X=L_{x}^{6}$ give us

$$
\begin{aligned}
\mathfrak{N}_{M} & \lesssim M^{\gamma-2}\left(N_{1} N_{2}\right)^{\frac{2-\alpha}{2}} \prod_{i=1,2}\left(N_{i}^{\frac{-(2-\alpha)}{2}}\left\|\mathbf{u}_{i}\right\|_{L_{t}^{2} L_{x}^{6}}\right)\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{L_{t}^{\infty} L_{x}^{2}}\|\mathbf{v}\|_{L_{t}^{\infty} L_{x}^{2}} \\
& \lesssim\left(N_{1} N_{2}\right)^{\frac{\gamma-\alpha}{2}} \prod_{i=1,2}\left(N_{i}^{\frac{-(2-\alpha)}{2}}\left\|\mathbf{u}_{i}\right\|_{L_{t}^{2} L_{x}^{6}}\right)\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{L_{t}^{\infty} L_{x}^{2}}\|\mathbf{v}\|_{L_{t}^{\infty} L_{x}^{2}} \\
& \lesssim\left(N_{1} N_{2}\right)^{\frac{\gamma-\alpha}{2}} \prod_{i=1}^{2}\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{U_{\alpha}^{2}}\|\mathbf{v}\|_{V_{\alpha}^{2}}
\end{aligned}
$$

Thus since for (i) of (123) $M \sim N_{2}$, we get

$$
\sum_{\text {(i) of }(123)} \mathfrak{N}_{M} \lesssim\left(N_{1} N_{2}\right)^{\frac{\gamma-\alpha}{2}} \prod_{i=1}^{2}\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{U_{\alpha}^{2}}\|\mathbf{v}\|_{V_{\alpha}^{2}}
$$

Case (ii) of (123). At first we estimate

$$
\mathfrak{N}_{M} \lesssim M^{-(d-\gamma)}\left\|\dot{P}_{M}\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{3}}\right)\right\|_{L_{t}^{1} L_{x}^{\infty}}\left\|\ddot{P}_{M}\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}} \mathbf{v}\right)\right\|_{L_{t}^{\infty} L_{x}^{1}}
$$

Let us choose r such that $\frac{d-\gamma}{2}<\frac{d}{r}<\frac{d-\alpha}{2}$. Applying Lemma 2.9 with $p_{1}=$ $\frac{r}{2}, p_{2}=\frac{r}{r-2}$ and $q_{1}=q=\infty$ to the radial kernel of \dot{P}_{M}, we get

$$
\begin{aligned}
\mathfrak{N}_{M} & \lesssim M^{-(d-\gamma)}\left\|\dot{P}_{M}\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right\|_{L_{t}^{1} L_{x}^{\infty}}\left\|\ddot{P}_{M}\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}} \mathbf{v}\right)\right\|_{L_{t}^{\infty} L_{x}^{1}} \\
& \lesssim M^{-(d-\gamma)+\frac{2 d}{r}}\left\|\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right\|_{L_{t}^{1} \mathcal{L}_{\rho}^{\frac{r}{2}} L_{\theta}^{\infty}}\left\|\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}} \mathbf{v}\right\|_{L_{t}^{\infty} L_{x}^{1}}
\end{aligned}
$$

From the Sobolev inequality (Lemma 2.11) and the embedding lemmas (Lemma 2.3 and Lemma 2.6) it follows that

$$
\begin{aligned}
\mathfrak{N}_{M} & \lesssim M^{-(d-\gamma)+\frac{2 d}{r}}\left\|\mathbf{u}_{1}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{-}^{\infty}}\left\|\mathbf{u}_{2}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{\infty}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{L_{t}^{\infty} L_{x}^{2}}\|\mathbf{v}\|_{L_{t}^{\infty} L_{x}^{2}} \\
& \lesssim M^{-(d-\gamma)+\frac{2 d}{r}}\left(N_{1} N_{2}\right)^{\frac{d-\alpha}{2}-\frac{d}{r}} \\
& \times \prod_{j=1,2} N_{i}^{-\frac{d-\alpha}{2}+\frac{d}{r}}\left(\left\|\mathbf{u}_{i}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{d}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{d}}\right)\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{L_{t}^{\infty} L_{x}^{2}}\|v\|_{L_{t}^{\infty} L_{x}^{2}} \\
& \lesssim M^{-(d-\gamma)+\frac{2 d}{r}}\left(N_{1} N_{2}\right)^{\frac{d-\alpha}{2}-\frac{3}{r}}
\end{aligned}
$$

$$
\times \prod_{j=1,2}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{L_{t}^{\infty} L_{x}^{2}}\|v\|_{L_{t}^{\infty} L_{x}^{2}}
$$

Then we conclude that
$\sum_{\text {(ii) of (123) }} \mathfrak{N}_{M}^{(\mathrm{ii)}}(1,2,3) \lesssim\left(N_{1} N_{2}\right)^{\frac{\gamma-\alpha}{2}} \prod_{i=1}^{2}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{U_{\alpha}^{2}}\|\mathbf{v}\|_{V_{\alpha}^{2}}$.
We have shown the proposition in the case (123). Now let us consider the case (132): $N_{1} \leq N_{3} \leq N_{2}$, which can be split into (i): $N_{3} \ll N_{2} \sim M$ or $N_{3} \sim N_{2} \sim M$ and (ii): $N_{3} \sim N_{2} \gg M$.

We first consider the case (i) of (132). If $d=2$, then we change the role of \mathbf{u}_{2} and \mathbf{u}_{3} in this case. Applying Lemma 2.9 with $p_{2}=1$ to the radial kernels of \dot{P}_{M} and \ddot{P}_{M}, we get

$$
\begin{aligned}
\mathfrak{N}_{M} & \lesssim M^{-(2-\gamma)}\left\|\dot{P}_{M}\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{2} L_{\theta}^{\infty}}\left\|\ddot{P}_{M}\left(\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}}\right) \mathbf{v}\right)\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{2} L_{\theta}^{1}} \\
& \lesssim M^{-(2-\gamma)}\left\|\widetilde{\widetilde{u}_{1}} \widetilde{\mathbf{u}_{2}}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{2} L_{\theta}^{\infty}}\left\|\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}}\right) \mathbf{v}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{2} L_{\theta}^{1}} \\
& \lesssim M^{-(2-\gamma)}\left\|\mathbf{u}_{1}\right\|_{L_{t}^{2} L_{x}^{\infty}}\left\|\mathbf{u}_{2}\right\|_{L_{t}^{\infty} \mathcal{L}_{\rho}^{2} L_{\theta}^{\infty}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{\infty} L_{\theta}^{2}}\|\mathbf{v}\|_{L_{t}^{\infty} L_{x}^{2}} .
\end{aligned}
$$

The Sobolev embedding $H_{\theta}^{1}\left(\mathbb{S}^{1}\right) \hookrightarrow L_{\theta}^{\infty}\left(\mathbb{S}^{1}\right)$ applied to the norms for $\mathbf{u}_{1}, \mathbf{u}_{2}$ yields

$$
\begin{aligned}
\mathfrak{N}_{M} \lesssim & M^{-(2-\gamma)}\left(\left\|\mathbf{u}_{1}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{\infty} L_{\theta}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{1}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{\infty} L_{\theta}^{2}}\right) \\
& \left(\left\|\mathbf{u}_{2}\right\|_{L_{t}^{\infty} L_{x}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{2}\right\|_{L_{t}^{\infty} L_{x}^{2}}\right)\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{\infty} L_{\theta}^{2}}\|\mathbf{v}\|_{L_{t}^{\infty} L_{x}^{2}}
\end{aligned}
$$

By the transfer principle for $\mathbf{u}_{1}, \mathbf{u}_{3}$ and the embeddings $U_{\alpha}^{2}\left(\mathbb{R} ; L_{x}^{2}\right), V_{\alpha}^{2}\left(\mathbb{R} ; L_{x}^{2}\right)$ $\hookrightarrow L_{t}^{\infty} L_{x}^{2}$, we have that

$$
\begin{gathered}
\mathfrak{N}_{M} \lesssim M^{-(2-\gamma)}\left(N_{1} N_{3}\right)^{\frac{2-\alpha}{2}}\left(\left\|\mathbf{u}_{1}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{1}\right\|_{U_{\alpha}^{2}}\right) \\
\left(\left\|\mathbf{u}_{2}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{2}\right\|_{U_{\alpha}^{2}}\right)\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{U_{\alpha}^{2}}\|\mathbf{v}\|_{V_{\alpha}^{2}},
\end{gathered}
$$

which gives us
$\sum_{(\mathrm{i}) \text { of }(132)} \mathfrak{N}_{M}^{(\mathrm{i})}(1,3,2) \lesssim\left(N_{1} N_{3}\right)^{\frac{\gamma-\alpha}{2}} \prod_{i=1,2}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{U_{\alpha}^{2}}\|\mathbf{v}\|_{V_{\alpha}^{2}}$.
If $d=3$, then Bernstein's inequality yields

$$
\begin{aligned}
\mathfrak{N}_{M} & \lesssim M^{-(3-\gamma)}\left\|\dot{P}_{M}\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right\|_{L_{t}^{2} L_{x}^{2}}\left\|\widetilde{P}_{M}\left(\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}}\right) \mathbf{v}\right)\right\|_{L_{t}^{2} L_{x}^{2}} \\
& \lesssim M^{-(3-\gamma)+1}\left\|\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right\|_{L_{t}^{2} L_{x}^{3}}\left\|\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}}\right) \mathbf{v}\right\|_{L_{t}^{2} L_{x}^{\frac{3}{2}}} \\
& \lesssim M^{\gamma-2}\left\|\mathbf{u}_{1}\right\|_{L_{t}^{2} L_{x}^{6}}\left\|\mathbf{u}_{2}\right\|_{L_{t}^{\infty} L_{x}^{2}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{L_{t}^{2} L_{x}^{6}}\|\mathbf{v}\|_{L_{t}^{\infty} L_{x}^{2}}
\end{aligned}
$$

Using the transfer principle for $\mathbf{u}_{1}, \mathbf{u}_{3}$ associated with the endpoint Strichartz estimate of (2.1), we have that

$$
\sum_{\text {(i) of }(132)} \mathfrak{N}_{M}^{(\mathrm{i})}(1,3,2) \lesssim\left(N_{1} N_{3}\right)^{\frac{\gamma-\alpha}{2}} \prod_{i=1,2}\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{U_{\alpha}^{2}}\|\mathbf{v}\|_{V_{\alpha}^{2}}
$$

On the other hand, from (ii) and the support condition it follows that $N_{3} \sim$ $N_{2} \sim N_{1} \gg M$. We perform a similar estimate to the case (ii) of (123) as follows:

$$
\begin{aligned}
& \sum_{\text {(ii) of }(132)} \mathfrak{N}_{M} \\
\lesssim & M^{-(d-\gamma)+\frac{2 d}{r}}\left(N_{1} N_{3}\right)^{\frac{d-\alpha}{2}-\frac{d}{r}} \prod_{i=1,2}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{U_{\alpha}^{2}}\|\mathbf{v}\|_{V_{\alpha}^{2}}\right. \\
\lesssim & \left(N_{1} N_{3}\right)^{\frac{\gamma-\alpha}{2}} \prod_{i=1,2}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{U_{\alpha}^{2}}\|\mathbf{v}\|_{V_{\alpha}^{2}} .\right.
\end{aligned}
$$

Let us treat the final case (312): $N_{3} \leq N_{1} \leq N_{2}$. This is split into the four parts: $\left(N_{3} \sim N_{1} \leq N_{2}\right) ;\left(N_{3} \ll N_{1} \ll N_{2}\right) ;\left(N_{3} \ll N_{1} \sim N_{2}\right.$ and $\left.N_{3} \lesssim M\right) ;\left(M \ll N_{3} \ll N_{1} \sim N_{2}\right)$. For simplicity we only consider the last case: $M \ll N_{3} \ll N_{1} \sim N_{2}$. The remaining cases can be handled similarly. Let us take r such that $\frac{d-\gamma}{2 d}<\frac{1}{r}<\frac{d-\alpha}{2 d}$. Applying Lemma 2.9 with $p=2, p_{1}=$ $\frac{2 r}{r+2}, p_{2}=\frac{r}{r-1}, q_{1}=r, q=\frac{2 r_{*}}{r_{*}-2}$ to the norm of $\mathbf{u}_{1} \mathbf{u}_{2}$ and $p=2, p_{1}=\frac{2 r}{r+2}, p_{2}=$ $\frac{r}{r-1}, q_{1}=q=\frac{2 r_{*}}{r_{*}+2}$ to the norm of $\mathbf{u}_{3} \mathbf{v}$, respectively, we get

$$
\begin{aligned}
\mathfrak{N}_{M} & \lesssim M^{-(d-\gamma)}\left\|\dot{P}_{M}\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{2} L_{\theta}^{\frac{2 r_{*}}{r *-2}}}\left\|\widetilde{P}_{M}\left(\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}}\right) \mathbf{v}\right)\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{2} L_{\theta}^{\frac{2 r_{*}}{r_{*}^{*+2}}}} \\
& \lesssim M^{-(d-\gamma)+\frac{2 d}{r}}\left\|\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{\frac{2 r}{r+2}} L_{\theta}^{r}}\left\|\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}}\right) \mathbf{v}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{\frac{2 r}{r+2}} L_{\theta}^{\frac{2 r_{*}}{r_{*}+2}}} \\
& \lesssim M^{-(d-\gamma)+\frac{2 d}{r}}\left(N_{1} N_{3}\right)^{\frac{d-\alpha}{2}-\frac{d}{r}} \prod_{j=1,2}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{U_{\alpha}^{2}}\|v\|_{V_{\alpha}^{2}}
\end{aligned}
$$

and hence

$$
\sum_{\text {(Last) }} \mathfrak{N}_{M} \lesssim\left(N_{1} N_{3}\right)^{\frac{\gamma-\alpha}{2}} \prod_{j=1,2}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)\left\|\nabla_{\mathbb{S}} \mathbf{u}_{3}\right\|_{U_{\alpha}^{2}}\|v\|_{V_{\alpha}^{2}}
$$

This proves (4.1).
Proof of (4.2). By Littlewood-Paley decomposition we have

$$
\begin{aligned}
& \left|\iint\left[V *\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right] \widetilde{\mathbf{u}_{3}} \mathbf{v} d x d t\right| \\
\leq & \sum_{M>0} \mid \iint\left[\dot{P}_{M}\left(V *\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right) \ddot{P}_{M}\left(\widetilde{\mathbf{u}_{3}} \mathbf{v}\right) d x d t \mid\right. \\
= & : \sum_{M>0} \mathfrak{N}_{M} .
\end{aligned}
$$

We first consider the cases (123): $N_{1} \leq N_{2} \leq N_{3}$ and (213): $N_{2} \leq N_{1} \leq N_{3}$. These cases can be split into two parts, $\max \left(N_{1}, N_{2}\right) \sim M$ and $N_{1} \sim N_{2} \gg M$. For both cases we use the embedding lemmas (Lemma 2.3 and Lemma 2.6),

Lemma 2.9 with $p_{2}=\frac{r}{r-2}, \frac{d-\gamma}{2 d}<\frac{1}{r}<\frac{d-\alpha}{2 d}$, the Sobolev inequality Lemma 2.11, and then Lemma 2.7 with $X=\mathcal{L}_{\rho}^{r} L_{\theta}^{r_{*}}$, to obtain that

$$
\begin{aligned}
\mathfrak{N}_{M} & \lesssim M^{-(d-\gamma)}\left\|\dot{P}_{M}\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right\|_{L_{t}^{1} \mathcal{L}_{\rho}^{\infty} L_{\theta}^{2}}\left\|\ddot{P}_{M}\left(\widetilde{\mathbf{u}_{3}} \mathbf{v}\right)\right\|_{L_{t}^{\infty} \mathcal{L}_{\rho}^{1} L_{\theta}^{2}} \\
\lesssim & M^{-(d-\gamma)+\frac{2 d}{r}}\left\|\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right\|_{L_{t}^{1} \mathcal{L}_{\rho}^{\frac{r}{2}}}\left\|\widetilde{L_{\theta}^{2}}\right\| \|_{L_{t}^{\infty}} \mathcal{L}_{\rho}^{1} L_{\theta}^{2} \\
\lesssim & M^{-(d-\gamma)+\frac{2 d}{r}}\left(N_{1} N_{2}\right)^{\frac{d-\alpha}{2}-\frac{d}{r}} N_{1}^{-\frac{d-\alpha}{2}+\frac{d}{r}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{1}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{r *}} \\
& N_{2}^{-\frac{d-\alpha}{2}+\frac{d}{r}}\left\|\mathbf{u}_{2}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{\infty}}\left\|\mathbf{u}_{3}\right\|_{L_{t}^{\infty} \mathcal{L}_{\rho}^{2} L_{\theta}^{\infty}}\|\mathbf{v}\|_{L_{t}^{\infty} L_{x}^{2}} \\
\lesssim & M^{-(d-\gamma)+\frac{2 d}{r}}\left(N_{1} N_{2}\right)^{\frac{d-\alpha}{2}-\frac{d}{r}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{1}\right\|_{U_{\alpha}^{2}} \prod_{i=2}^{3}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)\|\mathbf{v}\|_{V_{\alpha}^{2}},
\end{aligned}
$$

and hence

$$
\sum_{(123) \text { or }(213)} \mathfrak{N}_{M} \lesssim\left(N_{1} N_{2}\right)^{\frac{\gamma-\alpha}{2}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{1}\right\|_{U_{\alpha}^{2}} \prod_{i=2}^{3}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)\|\mathbf{v}\|_{V_{\alpha}^{2}}
$$

Now we consider the cases (132): $N_{1} \leq N_{3} \leq N_{2}$ and (231): $N_{2} \leq N_{3} \leq N_{1}$. These can be split into (i): $N_{3} \ll \max \left(N_{1}, N_{2}\right) \sim M$ or $N_{3} \sim \max \left(N_{1}, N_{2}\right) \sim$ M and (ii): $N_{3} \sim N_{2} \sim N_{1} \gg M$. The first case (i) can be easily treated with the Strichartz estimate (2.1). We consider (ii) separately; $N_{1} \leq N_{2}$ and $N_{2} \leq N_{1}$.

If $N_{1} \leq N_{2}$, then with the same r as above we estimate

$$
\begin{aligned}
\mathfrak{N}_{M} & \lesssim M^{-(d-\gamma)}\left\|\dot{P}_{M}\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{2} L_{\theta}^{2}}\left\|\ddot{P}_{M}\left(\widetilde{\mathbf{u}_{3}} \mathbf{v}\right)\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{2} L_{\theta}^{2}} \\
& \lesssim M^{-(d-\gamma)+\frac{2 d}{r}}\left\|\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}}_{2}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{\frac{2 r}{r+2}} L_{\theta}^{\frac{r r_{*}}{r+r}}}\left\|\widetilde{\mathbf{u}_{3}} \mathbf{v}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{\frac{2 r}{r+2}} L_{\theta}^{2}} \\
& \lesssim M^{-(d-\gamma)+\frac{2 d}{r}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{1}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{r}}\left\|\mathbf{u}_{2}\right\|_{L_{t}^{\infty} \mathcal{L}_{\rho}^{2} L_{\theta}^{r}}\left\|\mathbf{u}_{3}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{\infty}}\|\mathbf{v}\|_{L_{t}^{\infty} L_{x}^{2}} \\
& \lesssim M^{-(d-\gamma)+\frac{2 d}{r}}\left(N_{1} N_{3}\right)^{\frac{d-\alpha}{2}-\frac{d}{r}} N_{1}^{-\frac{d-\alpha}{2}+\frac{d}{r}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{1}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{r *}}\left\|\mathbf{u}_{2}\right\|_{L_{t}^{\infty} \mathcal{L}_{\rho}^{2} L_{\theta}^{r}} \\
& N_{3}^{-\frac{d-\alpha}{2}+\frac{d}{r}}\left\|\mathbf{u}_{3}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{\infty}}\|\mathbf{v}\|_{L_{t}^{\infty} L_{x}^{2}} \\
& \lesssim M^{-(d-\gamma)+\frac{2 d}{r}}\left(N_{1} N_{3}\right)^{\frac{d-\alpha}{2}-\frac{d}{r}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{1}\right\|_{U_{\alpha}^{2}} \prod_{i=2}^{3}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)\|\mathbf{v}\|_{V_{\alpha}^{2}} .
\end{aligned}
$$

On the other hand, if $N_{2} \leq N_{1}$, then

$$
\begin{aligned}
\mathfrak{N}_{M} & \lesssim M^{-(d-\gamma)}\left\|\dot{P}_{M}\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}}_{2}\right)\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{2} L_{\theta}^{2}}\left\|\ddot{P}_{M}\left(\widetilde{\mathbf{u}_{3}} \mathbf{v}\right)\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{2} L_{\theta}^{2}} \\
& \lesssim M^{-(d-\gamma)+\frac{2 d}{r}}\left\|\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{\frac{2 r}{r+2}}}\left\|\widetilde{L_{\theta}^{2}}\right\| \|_{L_{t}^{2} \mathcal{L}_{\rho}^{\frac{2 r}{r+2}} L_{\theta}^{2}} \\
& \lesssim M^{-(d-\gamma)+\frac{2 d}{r}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{1}\right\|_{L_{t}^{\infty} L_{x}^{2}}\left\|\mathbf{u}_{2}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{\infty}}\left\|\mathbf{u}_{3}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{\infty}}\|\mathbf{v}\|_{L_{t}^{\infty} L_{x}^{2}} \\
& \lesssim M^{-(d-\gamma)+\frac{2 d}{r}}\left(N_{2} N_{3}\right)^{\frac{d-\alpha}{2}-\frac{d}{r}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{1}\right\|_{L_{t}^{\infty} L_{x}^{2}} N_{2}^{-\frac{d-\alpha}{2}+\frac{d}{r}}\left\|\mathbf{u}_{2}\right\|_{L_{t}^{\infty} \mathcal{L}_{\rho}^{r} L_{\theta}^{\infty}}
\end{aligned}
$$

$$
\begin{aligned}
& N_{3}^{-\frac{d-\alpha}{2}+\frac{d}{r}}\left\|\mathbf{u}_{3}\right\|_{L_{t}^{2} \mathcal{L}_{\rho}^{r} L_{\theta}^{\infty}}\|\mathbf{v}\|_{L_{t}^{\infty} L_{x}^{2}} \\
\lesssim & M^{-(d-\gamma)+\frac{2 d}{r}}\left(N_{2} N_{3}\right)^{\frac{d-\alpha}{2}-\frac{d}{r}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{1}\right\|_{U_{\alpha}^{2}} \prod_{i=2}^{3}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)\|\mathbf{v}\|_{V_{\alpha}^{2}}
\end{aligned}
$$

By taking $\frac{d-\gamma}{2 d}<\frac{1}{r}<\frac{d-\alpha}{2 d}$ we get
$\sum_{(132) \text { or (231) }} \mathfrak{N}_{M} \lesssim\left(\min \left(N_{1}, N_{2}\right) N_{3}\right)^{\frac{\gamma-\alpha}{2}}\left\|\nabla_{\mathbb{S}} \mathbf{u}_{1}\right\|_{U_{\alpha}^{2}} \prod_{i=2}^{3}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)\|\mathbf{v}\|_{V_{\alpha}^{2}}$.
The final cases (312): $N_{3} \leq N_{1} \leq N_{2}$ and (321): $N_{3} \leq N_{2} \leq N_{1}$ are split into the four parts: $\left(N_{3} \sim \min \left(N_{1}, N_{2}\right)\right) ;\left(N_{3} \ll \min \left(N_{1}, N_{2}\right) \ll \max \left(N_{1}, N_{2}\right)\right)$; $\left(N_{3} \ll N_{1} \sim N_{2}\right.$ and $\left.N_{3} \lesssim M\right) ;\left(M \ll N_{3} \ll N_{1} \sim N_{2}\right)$. Since each case can be handled by a similar way to the cases (132) and (231), we leave the details to the readers. This completes the proof of (4.2).

5. Proof of Theorem 1.3

In view of the summation argument in Section 3 and Remark 1, we have only to show the nonlinear estimate, Proposition 4.1 for V satisfying (H). Let us first observe that $\psi_{M}:=M^{d-\gamma} \mathcal{F}^{-1}(\ddot{\beta}(\dot{\bar{M}}) \widehat{V})$ is integrable and its integral is independent of M. Here $\gamma=\alpha_{+}$or α. In fact, by the hypothesis of V

$$
\begin{aligned}
\int\left|\psi_{M}\right|= & \int_{|x| \leq M^{-1}}\left|\psi_{M}\right|+\int_{|x|>M^{-1}}\left|\psi_{M}\right| \lesssim M^{-1}\left\||x|^{d-1} \psi_{M}\right\|_{L^{\infty}} \\
& +M\left\||x|^{d+1} \psi_{M}\right\|_{L^{\infty}} \\
\lesssim & M^{-1} M^{d-\gamma}\left\|\nabla_{\xi}^{d-1}\left(\ddot{\beta}\left(\frac{\xi}{M}\right) \widehat{V}(\xi)\right)\right\|_{L^{1}}+M M^{d-\gamma}\left\|\nabla_{\xi}^{d+1}\left(\ddot{\beta}\left(\frac{\xi}{M}\right) \widehat{V}(\xi)\right)\right\|_{L^{1}} \\
\lesssim & 1
\end{aligned}
$$

Since $\dot{P}_{M}\left(V *\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right)=M^{-(d-\gamma)} \psi_{M} *\left(\dot{P}_{M}\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right),\left\|\dot{P}_{M}\left(V *\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right)\right\|_{\mathcal{L}_{\rho}^{r} L_{\theta}^{r_{*}}} \lesssim$ $M^{-(d-\gamma)}\left\|\dot{P}_{M}\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right\|_{\mathcal{L}_{\rho}^{r} L_{\theta}^{r_{*}}}$ for any $1 \leq r, r_{*} \leq \infty$. And hence,

$$
\mathfrak{N}_{M} \lesssim M^{-\left(d-\alpha_{+}\right)}\left\|\dot{P}_{M}\left(V *\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right)\right\|_{L_{t}^{q} \mathcal{L}_{\rho}^{r} L_{\theta}^{r_{*}}}\left\|\ddot{P}_{M}\left(\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}}\right) \mathbf{v}\right)\right\|_{L_{t}^{q^{\prime}} \mathcal{L}_{\rho}^{r^{\prime}} L_{\theta}^{r_{*}^{\prime}}}
$$

for $M \leq 1$ and

$$
\mathfrak{N}_{M} \lesssim M^{-(d-\alpha)}\left\|\dot{P}_{M}\left(V *\left(\widetilde{\mathbf{u}_{1}} \widetilde{\mathbf{u}_{2}}\right)\right)\right\|_{L_{t}^{q} \mathcal{L}_{\rho}^{r} L_{\theta}^{r_{*}}}\left\|\ddot{P}_{M}\left(\left(\nabla_{\mathbb{S}} \widetilde{\mathbf{u}_{3}}\right) \mathbf{v}\right)\right\|_{L_{t}^{q^{\prime}} \mathcal{L}_{\rho}^{r^{\prime}} L_{\theta}^{r_{*}^{\prime}}}
$$

for $M>1$. Following the proof of Proposition 4.1, we actually get that

$$
\sum_{M \leq 1} \mathfrak{N}_{M} \lesssim\left(N_{\min } N_{\mathrm{med}}\right)^{\frac{\alpha+-\alpha}{2}} \prod_{i=1}^{3}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)
$$

and

$$
\sum_{M>1} \mathfrak{N}_{M} \lesssim \ln \left(1+N_{\min } N_{\mathrm{med}}\right) \prod_{i=1}^{3}\left(\left\|\mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}+\left\|\nabla_{\mathbb{S}} \mathbf{u}_{i}\right\|_{U_{\alpha}^{2}}\right)
$$

So by using the summation technique we get the desired result.
Acknowledgements. The authors would like to thank the anonymous referee for the careful reading of our manuscript and the valuable comments. The first author was supported by research funds of Chonbuk National University in 2015.

References

[1] Y. Cho, Short-range scattering of Hartree type fractional NLS, J. Differential Equations 262 (2017), no. 1, 116-144.
[2] Y. Cho, H. Hajaiej, G. Hwang, and T. Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity, Funkacial. Ekvac. 56 (2013), no. 2, 193-224.
[3] Y. Cho, G. Hwang, and T. Ozawa, On small data scattering of Hartree equations with short-range interaction, Commun. Pure Appl. Anal. 15 (2016), no. 5, 1809-1823.
[4] , Corrigendum to "On small data scattering of Hartree equations with shortrange interaction" [Comm. Pure Appl. Anal. 15 (5) (2016), 809-1823], Commun. Pure Appl. Anal. 16 (2017), no. 5, 1939-1940.
[5] Y. Cho, G. Hwang, and C. Yang, On the modified scattering of 3-d Hartree type fractional Schrödinger equations with Coulomb potential, in preprint.
[6] Y. Cho and S. Lee, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J. 62 (2013), no. 3, 991-1020.
[7] Y. Cho and K. Nakanishi, On the global existence of semirelativistic Hartree equations, Harmonic analysis and nonlinear partial differential equations, 145-166, RIMS Kkyroku Bessatsu, B22, Res. Inst. Math. Sci. (RIMS), Kyoto, 2010.
[8] Y. Cho and T. Ozawa, On the semirelativisitc Hartree-type equation, SIAM J. Math. Anal. 38 (2006), no. 4, 1060-1074.
[9] , Short-range scattering of Hartree type fractional NLS II, Nonlinear Anal. 157 (2017), 62-75.
[10] Y. Cho, T. Ozawa, and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal. 10 (2011), no. 4, 1121-1128.
[11] T. Coulhon, E. Russ, and V. Tardivel-Nachef, Sobolev Algebras on Lie Groups and Riemannian Manifolds, Amer. J. Math. 123 (2001), no. 2, 283-342.
[12] Z. Guo, Sharp spherically averaged Stichartz estimates for the Schrodinger equation, Nonlinearity 29 (2016), no. 5, 1668-1686.
[13] Z. Guo, Z. Hani, and K. Nakanishi, Scattering for the 3D Gross-Pitaevskii equation, in preprint (arXiv:1611.08320).
[14] M. Hadac, S. Herr, and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 3, 917-941.
[15] S. Herr and T. Tesfahun, Small data scattering for semi-relativistic equations with Hartree type nonlinearity, J. Differential Equations 259 (2015), no. 10, 5510-5532.
[16] K. Kirkpatrick, E. Lenzmann, and G. Staffilani, On the continuum limit for discrete NLS with long-range lattice interactions, Comm. Math. Phys. 317 (2013), no. 3, 563-591.
[17] H. Koch, D. Tataru, and M. Visan, Dispersive Equations and Nonlinear Waves, Oberwolfach Seminars 45, 2014.
[18] N, Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298-305.
[19] C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse, Springer, 1993.
[20] H. Triebel, Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds, Ark. Mat. 24 (1986), no. 2, 299-337.

Yonggeun Cho
Department of Mathematics and Institute of Pure and Applied Mathematics
Chonbuk National University
Jeonju 54896, Korea
Email address: changocho@jbnu.ac.kr
Tohru Ozawa
Department of Applied Physics
Waseda University
Tokyo 169-8555, Japan
Email address: txozawa@waseda.jp

[^0]: Received April 2, 2017; Revised June 15, 2017; Accepted July 24, 2017.
 2010 Mathematics Subject Classification. 35Q55, 35Q53.
 Key words and phrases. Hartree type fractional Schrödinger equation, small data scattering, angularly averaged Strichartz estimate, U^{p} and V^{p} spaces.

