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Lo-NORM ERROR ANALYSIS OF THE
HP-VERSION WITH NUMERICAL INTEGRATION

Ix-SuNng KM

ABSTRACT. We congider the hp—version to solve non-constant co-
efficients elliptic equations with Dirichlet boundary conditions on
a bounded, convex polygonal domain © in R2. To compute the
integrals in the variational formulation of the discrete problem we
need the numerical quadrature rule scheme. In this paper we con-
sider a family Gy, = {I,»} of numerical quadrature rules satisfying
certain properties. When the numerical quadrature rules I, € Gp
are used for calculating the integrals in the stiffness matrix of the
variational form we will give its variational form and derive an error

estimate of |lu — '122’§||0,Q.

1. Introduction

Let Q be a bounded, convex polygonal domain in R? with boundary
I'. Let M = {J"},h > 0 be a quasi-uniform, regular family of meshes
J" = {Q}} defined on Q, where O} is a closed quadrilateral, and

(L.1) max diam(Q")=h forall Q" J"ec M.
Q}Lejh

Further we assume that for each Qff € J" there exists an invertible
mapping Tl? 0 — ij with the following correspondence:

(1.2) TeQe—z=THE) e}
and
(1.3) FeU,@) —t=Fo (T U, D),

Received March 9, 2001. Revised August 28, 2001.

2000 Mathematics Subject Classification: 65(G99.

Key words and phrases: the hp version, numerical quadrature rules, non-constant
coefficients elliptic equations.



10 Ik-Sung Kim

where O denotes the reference element I x I = [—1,1]* in R2,

Up(9)
(1.4) o .
= {t : t is a polynomial of degree < p in each variable on 2}
and
(1.5) Uy ={t : T=to T} c U,()}.

We now consider the following model problem of elliptic equations :
(1.6) Find u € H(Q) such that — div(aVu) = f in Q C R,

where two functions ¢ and f satisfy a compatibility condition to ensure
a solution exists, and

(1.7) H}(Q) ={ue H(Q) : u vanishes on I'}.

For the sake of simplicity, we assume that

(1.8) 0< A; <a(z) £ Ay forall zeQ
and
(1.9) f € La(82).

In addition, we also assume that there exists a constant M > 1 such
that

-1

(110) T lpsons [T Npoogr A for 0<m< M,
e =1
(L1 T lmeos » M) Dpooiop A for 0<m<M—1,

o~ o 1 —

where JJ and (J}')  denote the Jacobians of T}* and (T}) ! respec-
tively.

Then, as seen in [10, Theorem 3.12], we obtain the following correspon-

dence: For any a € [1,00], 0 < m < M,

(1.12) Tewme @) et =%o (T e Wme(Qh)
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with norm equivalence

(113)  Cih™= 3|t < Nl ag < C2R™=D]lt]

m,o, 0 m,e, QR
with the subseript & omitted when o = 2. Namely, we have
(1.14) CLR™ Vtl i S (g < C2h™ Dt -

Let us define
(L15)  SH(Q) = {u € HY(Q) : ugp o (TP) € Up() for all O} € 7"},
where uqy denotes the restriction of u € H 1) to QF € J" and

(1.16) Spo(Q) = SHQ) N H(Q).

Then, using the hp—version of the finite element method with the mesh
J" = {Q}} we obtain the following discrete variational form of (1.6):

Find 'ug‘ € SQ,O(Q) satisfying

1.17
(L17) B(ug,vg) = (f, UZ)Q for all o} € S,(Q),
where
(1.18) B(u,v) = / aVu - Vudz,
Q

the usual inner product

(1.19) (f,v)gz/ﬂfvdx.

Let us now give some approximation results which will be used later.

LevMA 1.1. For each integer [ > 0, there exists a sequence of pro-
jections II,, : H'(Q) — Up(2), p=1,2,3,--+ such that

(1.20) 0L, =3, forall o € Uy(f)),

& —Ta)_ o <Cp "Il forall e H(Q)

(1.21)
with 0<s<]<r.
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Proof. See [11, Lemma 3.1]. O

LEMMA 1.2. Let @ € H"(Q) with r > 2. Then the projection 12
from Lemma 1.1 satisfies

(122 @123l . 5 < Cp @, 5

Proof. By interpolation results ([9, Theorem 3.2] and [7, Theorem
6.2.4]) we have that for 0 < ¢ < L,

(1.23) iz -T2, o < Clli— nganie’ﬁHa - nganf_g’ﬁ.

We also have from Lemma 1.1 that

(1.24) @~ 13a), 5 < Cp~C Nl 5 for 0<r<2<s.
Hence, taking r =1+ and r =1 — ¢ in (1.24) we obtain

L2s)  a-IZall, ala-T2al; , < Op el g,

which completes the proof from (1.23). O

2. The hp—version with numerical integration

We consider numerical quadrature rules I,,, defined on the reference
element 2 by

n(m)

2.) In@) = Y. @7 9@E) ~ [ 9(&)ds

where m is a positive integer. Let G, = {I,,,} be a family of quadrature
rules I, with respect to U,(Q?), p=1,2,3, .-, satisfying the following
properties : For each I, € Gp,

(K1) @7 >0 and Z"eQ for i=1,---,n(m).
(K2) In(@®) < CilFllgq forall geU,().
(K3) Collglis < Im(3%) forall § e Tp(Q),
. 85 ~ ~
where U,(f)) = {85?1- L GeU,0)} c UL,
(K4) In(3) = / §(@)de forall §€ Uy (@),
Q

where d(p) > 0 is a fixed integer relative to p and d(m) > d(p).
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We also get a family Gp o = {Im o} of numerical quadrature rules with
respect to S (0), defined by

I 0 60z) Z whoap(ef) = 3 07 TH@T) ooy o THED)
1
2.2 i=
( ) n(m,) =
Z ,wm ]h =m. th( ) = I (Jk th)
and
(23) m Q Z I7.,.L Qh th

h
Qheg

In particular, one may be interested in Gauss-Legendre(G-L) quadra-
ture rules. Let L, denote the cross-products of g-point G-L rules along

the 7; and Ty axes on {} = I x I, given by

a3

q
L@ =Y > @fwigaE]) forall ge Ly(®),

where 7}, = (2},%]) € Q =T x I with the weights @7 and wF. We
consider a family {L,} >1(p) of G-L quadrature rules with respect to
Up(ﬁ) such that [(p) = p + 1. Then, {Lq}qzl(p) satisfy the properties

(K1) — (K4). In fact, when g > p+ 1 L, (@) is exact for all § € Uy ()
with d(q) > 2p + 1 > 0, so that (K2) and (K3) hold with Cy = Cy = 1.

Here, one may employ the numerical quadrature rules scheme for
computing the integrals in the discrete variational form (1.17). Espe-
cially, since the model problem (1.6) is a non-constant coefficients elliptic
problem the numerical quadrature rules I, € G, can be used for cal-
culating the integrals in the stiffness matrix. Thus, we denote by DF
the 2x 2 Jacobian matrix of F : R? — R?, and define two discrete inner
products

(24) (u’v)m,,Qi" = ITTL,SZQ ((UU)Q'Z) = Im(Jl{:l (uv)ﬂk) on QZ € jhv

(2.5) (U V)0 = Z (u,v)m_Qk on .
Qhegh
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Then, under the assumption that all integrations in the load vector
of (1.17) are performed exactly, using the quadrature rules I,,, € G, for
computing the integrals in the stiffness matrix of (1.17) we obtain the
following actual problem of (1.17): Find w ”h €5, f () such that

(2.6) Bm.a(Uh,vp) = (f,v}),, for all U}LESh 0(82),
where
Bmg(uh ’Ug)

= m,ﬂ(avup . V’Ug)
= Z Iman (GQQV(a];)QZ -V(v{;)n;)

Qhegh
- Y (T @] (6T «6Hm])
Qhegh

; h—1 =yt (b b T
Here, if we let (DT} ") (DTP) = <b21 by )’ then (ai)or =

—

T
et : . Th Z1 =1
J,?(bz-j)% are the entries of the matrix J (DT} ) (IFL ) . For the
simplicity of notation, if the restrictions Ggn, (a,;j)%, (uf) an and (v; )Qh
are simply denoted by @, a;, Uy and v} respectively, then we have

B'ITL,Q(aZ7 'U}];L)

= Y (e @) O (O (Vb))

Qhegh
AN
-y Im(’d %! (fil& “,3) = )
(2.7)  qregn 8;: @z1 g2 %
Z Z( Emh 8’0’1)
B eghi,j=1 Y BLE:L BLL'] m,ﬁ

Bu” c%

= D Z(“"‘”a’“’axj) .

Qhegh ij=1 4,2

Now, we will derive the Lg-norm error bound for the numerical so-
lution in (2.6). To estimate the error |u — uh|| we start with the
following lemma.
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LEMMA 2.1. Let w be the exact solution of (1.6) and u) the hp-
version solution of (1.17). Then, for an approximate solution ﬂ’,} of ug
which satisfies (2.6) we have

=~h
H?,L - up”@ Q

2.8 < C sup

(2:8) weHO(Q) v "63” ) ||w||0 o
+ IB(ﬂ’;,vp) — Bm,a(@l}, v},

where for each w € H°(f1), 5, € Ho (©) denotes the solution of varia-

tional problem:

(2.9) B($w,v) = (w,v)q for all v & Hy(Q).

~ h
{H hHl,QHS'LU _'Ule,Q

Proof. |ju—u}|] 0. Can be characterized as

|(w, w — T)a

(2.10) flu —uh = sup

loa= SRy Tl
Since u — ﬂg € H} () we have from (2.9) that
(2.11) B(sw,u — ) = (w,u —Tp)a.

Hence, for each v)* € SP((Q2)

(w,u ~@)e = B(Sw,u ~ U))’

(2.12) = B(u—1l, su) — B(u — U5, v}) + Blu— i, vp)
= B(u— p,sw - p) + B(u,’u;}) - B(ug,vg)

Further, since
(2.13) B(u,v?) = (f,v})a = Bma(@k, o)
it follows that
|(’LU U — ﬁh)gﬂ
< |Blu— ik, s — o) + [B@, o) — Bra(@k,ob)|

p)
(2.14) o B
<C hEISI}sz(Q){”u u’p“LQ“Sw 'Uplll,&'l
+ |B(~h ) - Bm,n(ﬂz,vg‘ﬂ}.
The leroma follows from (2.10) and (2.14). 0

The error ||u — ﬂgll 0.oWill depend upon the smoothness of the exact

solution u, the coefficient a and @;;. In this connection, we give some
results.
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_ Lemma 2.2. Let @;,Aﬁ)}; € Up(ﬁ) and g € Lm(fl). Then, for all
vg,v2 € Uy(Q), fr € Upr() withO < g<pandr=d(im)—p—q>0 we
have

| (§p, Up)g — (GUp, Up) 5 |
(2.15) < C{UIG Nl ol — 03l gl — 0211, 4

+17 = Grllo,co,pplloa Nl ts

where C is independent of p, ¢ and m.

Proof. For any G € U,(Q) we have
l (ga;’@)ﬁ - (E@: ﬂ;)m,ﬁ I
(2:16) < [(§Up, Up)g — (Grilp, Up)gy | + | (9rps Up)ey — (97Up; Up) .o |

e

+ | (ﬁﬂ;vﬂ;)m,ﬁ - (g Up, Up) 3 I

Thank to (K4),

.17) (@@,ﬁj)ﬁ — (g’}z%,ﬂf)mﬁ =0 for any Lz% € Uq(?) and
(Grup, v2)g ~ (Grity, Ug)m,ﬁ =0 for any v € U, ()
Hence,
(65, T)g — (@, B
(2.18) < | (6, Ty = v3)g — (Grvd T — ¥2)g |

+ 1 (Grvg, By = 09) 5 — (6, T = 03) . 5|

By the Schwarz inequality we obtain

-~ —~ ~
| (grup,up — 'Ug)ﬁ - (gT'Uéaup - Ug)ﬁ l

- ad s ad
(2.19) < (@ — 1), 6@ — 0))g (@ - 02,5 — 12)3
S Cld e T — vl 5 1T — 52y 5

Also, from (K2) we have

| @0k —2),, o — (375, By = 72), 5|

< (Gr(tp — vg): Gr(Up — v))

]

(T — 02, 1 — 102)
(2.20) A2 vom

-~ 1 ~ -~
b

< CllGrllg,00, (Bp — vg, Up — vg)

< Cllgrllo o0 alltr — vglly g lltp — v3lly o-
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Hence, combining (2.19) and (2.20) we estimate
| (G, Tp)gy — (07, Up) 0|

(2.21) N B

< Cllgrllg oo alltes — Uq”o,?z“up - UQHO@'

-

Similarly, since § € L, (£2) we obtain

o — e e

(9 U, Up)ﬁ — (Grtp, up)ﬁ I

1o, L
(2.22) <A@ — 81y, (@ — Gr)ap) 2 (U, Up)2
< ClT = Grllo oo 0 %sllo 8 1T510 &
and
|(§;‘ﬂ;’ E;)'m,’ﬁ - (ﬁﬂ;; a;;)myﬁl
1 1
S ((97 - f)il’_;: (§;~ - a)ﬂ;)E & (@7 a‘;)i o
(223) m,2 m,2

Lo
< Cligr - Qno,oo,ﬁ(upr“pﬁ%ﬁ(”p:“p);n’@

< Clgr = Gllo,c0,allillo &1l 5-

The lemma follows from (2.21), (2.22), (2.23), and (2.18).

Further, we let

(2.24) Mp.q = o, max |3, 0

where the subscript ¢ will be omitted when ¢ = 2.

17

Then, we obtain the following lemma which gives an estimate for the

last term of the right side in (2.8).

.~

LeMMA- 2.3, Suppose that u € H?(2),a € H*(Q) and a;; € H? (1)
for i, = 1,2, such that A = min(e, p) > 2. For any w € H°(Q) and
an approximation U which satisfies (2.6) let vl = II\s,, € 82 () with

respect to (2.9), then we have
|B(ih, vl) — B Uk, v])]

[wllo.0

(2.25)

< C[{r V(g™ + DAMy + ¢ hMo oo Hlu — T,
+ {7-_()\—1) (p—l + q—O' 4+ 1)hUM)\ + q—ghUMO,oo}”u”O-’Q];

where q is a positive integer such that 0 < ¢ < p andr = d(m)—p—gq > 0.
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Proof. For any w € H?(2) we have

(2.26)

. Oul vk (9u” c‘?vh
Q05 —F==, == — | aa;; .
Yoz 0z, o Yo%, 0% a
m

For each @;; i,7 = 1,2 and QF € J" we let ¢ be any integer such

that 0 < ¢ <pandr =d(m)—p—q>0. Then since Ga;; € Loo (1), due

to Lemma 2.2 with 'z;g %—, w2 = M €U, (Q) and ¢, = H2(@ay;),

q
we have

ok th oup  Ouh
Ga;;—= - |aa; ==,
2
707, 3:733 5 Y 0%, (9:1:7 a
L

1
Qhegh

guh  ONiay ok Ok
(227 <cC IT12(@ as;) HOOOQ” = ,:1'“ ’ ‘_fg - —ivi
oz, 0% 0.0/l 0Z; O 0,8
uh. 3'Uh
+ @ a5 — I (@ di ”0°°QH o7, 09“5567 0,8

Since @d;; € H*(Q) with A = min(a, p) > 2 we obtain from Lemma
1.2 and (1.14) that

5vh
o 1l ”

o T al
< Cr OV aag), 518 - T, 4 + Huul@)llvgulﬁ
< Cr- O V@, (@ - a4

(2.28) +lal @) (52l 8 + 150 - 1550l o)
< Cr-C-Vjaag|, s (@ - T, 5 + 1l o)

< (153 1l5,0 + 72153 05.5)
< Cr~O=Up1+p7h)

x M (lu = eIl o+ 5l o) sl -

1,0k
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Further, it follows from Lemma 1.1 Lemma 1.2 and (1.14) that
| oIILg | ovh  AIkuk
OOOQHaCUZ 8§L 09”81'] 65?:7 (
<C {“aam (@ am)”o 00,2
iy — Il gllvy — TguRll, g
<C {”aaw - H2(a’ azy)ll[),oo‘ﬁ + ]V[O,oo}

x {Jla— A, o + 13— I, o }Ivk — IR, 4
< Cq—l{,r. (A— 1)“aa’:'i"‘7‘.”)\§ +M000}

x (i - ), ata " Y@l a vk, g
< C’q_lh{r =D a1, + Mj, oo}

x {flu -~ ﬂﬁlllm +¢ ORI ull, on Hlvpll,p

where C' is independent of p and q.
Thus, Since ||'u;j||2,% < C’HH]%stz’Qz < C[lsw”z!%, substituting
(2.28) and (2.29) in (2.27) we have

|B( Uy, p) Bmﬂ(ugavg)l
diih Ouh ok v
< P e~
¢ 2, max (““‘J 0%, BIJ) (“ %3 5%, axj) A{
Qhejh Q m,§2

<C Y {a RO My + Moo
QhEJh'

”H2 (@as;)

-~

0,8

(2.29)

X (lu =T, gp + " DRE D lu), 00)
—(A—1) -1
x Ma(lu =@, + OV ul,0p) }
% 51 l2,0
< C{q_lh(r“()‘"l)M,\ + Myoo)
x (Ju =, o+ VR ], o)
+r=(- 1)h(l +p'1)
x M(lu = @, o+ A ull, ) Hlsw 20
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< O{r~AN(g™! + DhMy + ¢ AMo,eo tHlu — 0,
+{r" AV g+ DMy + g7 Th Moo}
x Jullyalllswl20-

In addition, since € is convex, due to the smoothness of ¢ and a;; given
by (1.8), (1.10) and (1.11), it follows from the regularity of the varia-
tional problem (2.9) that

(2.31) lsuwllz,0 < Cllwllgq-

This completes the proof. (]

By a direct application of Lemma 2.3 to Lemma 2.1 we obtain the
following result which gives an asymptotic Lo(2)-norm estimate for the
rate of convergence of the hp—version with numerical integration.

THEOREM 2.4. For any I, € Gp, let u € HZ () be the exact solution
of (1.6) and @} € S} ;(Q) an approximate solution of u}; which satisfies

(2.6). Suppose that a € H*(Q) and &;; € HP(Q) for i,j = 1,2, such
that A = min(«, p) > 2. Then, for any integer q such that 0 < ¢ < p
and r = d(m) —p— q > 0 we have
“'LL - ﬂzno’ﬂ
(2.32) < C[{r=AD(g7' + DAM, + ¢ *hMo .o Hlu — 2|,
+ {r" OV g7+ AT My + 7 Mo oo }Hlull,. 0]
where (' is independent of p and q.

Proof. For each w € HY(Q) it follows from Lemma 1.1 and (1.14)
that

5w = vplina < Clism — 28wl 5

(2.33) e _
<Cp IHSMHQ,Q <Cp 1hl|5wH2,Q§;'

Since ||sw — 2|3 o = Z 8w — ’U;”iﬂz we have from (2.31) that

Qregh
. ~h, h
s~ Blhole ~Hho
(2.34) < Cp 7 hllu— G|, liswllza

= Cp_lh'nu - ﬂg};”l.Q”w”O,Q‘
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Thus, by a direct application of Lemma 2.3 and (2.34) to Lemma 2.1
we see that the first term of the right side in (2.8) is dominated by the
term ¢~ My oo|lu — G|, , in (2.25). This completes the proof. O

In [6, Theorem 4.8] it has been shown that

(2.35) lu—ulll, , < Cp~ @ DRE Dy 4.

1,0
Thus, if d{(m) is large enough with ¢ = p, then the rate of convergence for
U is asymptotically O(p~(@~V A1), which coincides with

Ju— 2l
that of ||u — uﬁ”m' It follows that the Lo(§2) error ||u — &‘QHOQ in (2.32)

is asymptotically O(p~?h%) under nearly exact integrations. This im-
plies that the Ly error |lu— |, , has nearly O(p~'h) improvement

over the H* error |lu — U}|, - Further, we see the following fact.

In the case where o and p are large enough, the terms containing
the factor »~(*~1) in (2.32) may be dominated by the other terms, so
that the rate of convergence for [|u — %" [l  is asymptotically O(p~?h7).

Consequently, if o and G;; are sufficiently smooth, then we have no need
of overintegration. Even when d(m) = 2p + 1 with ¢ = p we obtain the
optimal rate of convergence O(p~7h7).
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