• Title/Summary/Keyword: knowledge network

Search Result 1,989, Processing Time 0.025 seconds

Intelligent FMC Scheduling Utilizing Neural Network and Expert System (신경회로망과 전문가시스템에 의한 FMC의 지능형 스케쥴링)

  • 박승규;이창훈;김유남;장석호;우광방
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.651-657
    • /
    • 1998
  • In this study, an intelligent scheduling with hybrid architecture, which integrates expert system and neural network, is proposed. Neural network is trained with the data acquired from simulation model of FMC to obtain the knowledge about the relationship between the state of the FMC and its best dispatching rule. Expert system controls the scheduling of FMC by integrating the output of neural network, the states of FMS, and user input. By applying the hybrid system to a scheduling problem, the human knowledge on scheduling and the generation of non-logical knowledge by machine teaming, can be processed in one scheduler. The computer simulation shows that comparing with MST(Minimum Slack Time), there is a little increment in tardness, 5% growth in flow time. And at breakdown, tardness is not increased by expert system comparing with EDD(Earliest Due Date).

  • PDF

Context Aware System based on Bayesian Network driven Context Reasoning and Ontology Context Modeling

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.254-259
    • /
    • 2008
  • Uncertainty of result of context awareness always exists in any context-awareness computing. This falling-off in accuracy of context awareness result is mostly caused by the imperfectness and incompleteness of sensed data, because of this reasons, we must improve the accuracy of context awareness. In this article, we propose a novel approach to model the uncertain context by using ontology and context reasoning method based on Bayesian Network. Our context aware processing is divided into two parts; context modeling and context reasoning. The context modeling is based on ontology for facilitating knowledge reuse and sharing. The ontology facilitates the share and reuse of information over similar domains of not only the logical knowledge but also the uncertain knowledge. Also the ontology can be used to structure learning for Bayesian network. The context reasoning is based on Bayesian Networks for probabilistic inference to solve the uncertain reasoning in context-aware processing problem in a flexible and adaptive situation.

Comparison of Alternative knowledge Acquisition Methods for Allergic Rhinitis

  • Chae, Young-Moon;Chung, Seung-Kyu;Suh, Jae-Gwon;Ho, Seung-Hee;Park, In-Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.91-109
    • /
    • 1995
  • This paper compared four knowledge acquisition methods (namely, neural network, case-based reasoning, discriminant analysis, and covariance structure modeling) for allergic rhinitis. The data were collected from 444 patients with suspected allergic rhinitis who visited the Otorlaryngology Deduring 1991-1993. Among four knowledge acquisition methods, the discriminant model had the best overall diagnostic capability (78%) and the neural network had slightly lower rate(76%). This may be explained by the fact that neural network is essentially non-linear discriminant model. The discriminant model was also most accurate in predicting allergic rhinitis (88%). On the other hand, the CSM had the lowest overall accuracy rate (44%) perhaps due to smaller input data set. However, it was most accuate in predicting non-allergic rhinitis (82%).

  • PDF

Analysis of Experience Knowledge of Shooting Simulation for Training Using the Text Mining and Network Analysis (Text Mining과 네트워크 분석을 활용한 교육훈련용 모의사격 시뮬레이션 경험지식 분석)

  • Kim, Sungkyu;Son, Changho;Kim, Jongman;Chung, Sehkyu;Park, Jaehyun;Jeon, Jeonghwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.700-707
    • /
    • 2017
  • Recently, the military need more various education and training because of the increasing necessity of various operation. But the education and training of the military has the various difficulties such as the limitations of time, space and finance etc. In order to overcome the difficulties, the military use Defense Modeling and Simulation(DM&S). Although the participants in training has the empirical knowledge from education and training based on the simulation, the empirical knowledge is not shared because of particular characteristics of military such as security and the change of official. This situation obstructs the improving effectiveness of education and training. The purpose of this research is the systematizing and analysing the empirical knowledge using text mining and network analysis to assist the sharing of empirical knowledge. For analysing texts or documents as the empirical knowledge, we select the text mining and network analysis. We expect our research will improve the effectiveness of education and training based on simulation of DM&S.

Interactive Human Intention Reading by Learning Hierarchical Behavior Knowledge Networks for Human-Robot Interaction

  • Han, Ji-Hyeong;Choi, Seung-Hwan;Kim, Jong-Hwan
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1229-1239
    • /
    • 2016
  • For efficient interaction between humans and robots, robots should be able to understand the meaning and intention of human behaviors as well as recognize them. This paper proposes an interactive human intention reading method in which a robot develops its own knowledge about the human intention for an object. A robot needs to understand different human behavior structures for different objects. To this end, this paper proposes a hierarchical behavior knowledge network that consists of behavior nodes and directional edges between them. In addition, a human intention reading algorithm that incorporates reinforcement learning is proposed to interactively learn the hierarchical behavior knowledge networks based on context information and human feedback through human behaviors. The effectiveness of the proposed method is demonstrated through play-based experiments between a human and a virtual teddy bear robot with two virtual objects. Experiments with multiple participants are also conducted.

A Study on Personal Experience Knowledge Evaluation Model for Knowledge Service (지식서비스를 위한 개인경험지식 분석 평가 모델 연구)

  • Kim, Yu-Doo;Joo, In-Hak;Park, Yun-Kyung;Moon, Il-Young;Kwon, Oh-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1865-1872
    • /
    • 2013
  • The social network services are grown rapidly through dissemination of smart devices. Therefore, increasing the data exponentially because many people use web services. Using these big data, it will be needed study of providing customized knowledge. So in this paper, we had collected data of 40 people for implementation of knowledge service using big data during one month. Based on these data, we had inferred information of location and moving type, and evaluated accuracy. Through that we had studied personal experience knowledge evaluation model for knowledge service.

A Hybrid Knowledge Representation Method for Pedagogical Content Knowledge (교수내용지식을 위한 하이브리드 지식 표현 기법)

  • Kim, Yong-Beom;Oh, Pill-Wo;Kim, Yung-Sik
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.4
    • /
    • pp.369-386
    • /
    • 2005
  • Although Intelligent Tutoring System(ITS) offers individualized learning environment that overcome limited function of existent CAI, and consider many learners' variable, there is little development to be using at the sites of schools because of inefficiency of investment and absence of pedagogical content knowledge representation techniques. To solve these problem, we should study a method, which represents knowledge for ITS, and which reuses knowledge base. On the pedagogical content knowledge, the knowledge in education differs from knowledge in a general sense. In this paper, we shall primarily address the multi-complex structure of knowledge and explanation of learning vein using multi-complex structure. Multi-Complex, which is organized into nodes, clusters and uses by knowledge base. In addition, it grows a adaptive knowledge base by self-learning. Therefore, in this paper, we propose the 'Extended Neural Logic Network(X-Neuronet)', which is based on Neural Logic Network with logical inference and topological inflexibility in cognition structure, and includes pedagogical content knowledge and object-oriented conception, verify validity. X-Neuronet defines that a knowledge is directive combination with inertia and weights, and offers basic conceptions for expression, logic operator for operation and processing, node value and connection weight, propagation rule, learning algorithm.

  • PDF

Influencing Factors on the Acceptance of Blockchain Technology in Capturing and Sharing Project Knowledge: A Grounded Theory Study

  • Bardesy, Waseem S.;Alsereihy, Hassan A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.262-270
    • /
    • 2022
  • In the past two decades, there has been an increasing interest in project knowledge management, as knowledge is a crucial resource for project management success. Knowledge capture and sharing are two effective project management practices. Capturing and sharing project knowledge has become more efficient due to technological advances. Nevertheless, present technologies face several technical, functional, and usage obstacles and constraints. Thus, Blockchain technology might provide promising answers, yet, there is still a dearth of understanding regarding the technology's proper and practical application. Consequently, the goal of this study was to fill the gap in the literature about the adoption of Blockchain technology and to investigate the project stakeholders' acceptance and willingness to utilize the technology for capturing and sharing project knowledge. Due to this inquiry's exploratory and inductive characteristics, qualitative research methodology was used, namely the Grounded Theory research approach. Accordingly, eighteen in-depth, semi-structured interviews were conducted to collect the data. Concurrent data collection and analysis were undertaken, with findings emerging after three coding steps. Four influencing factors and one moderating factor were identified as affecting users' acceptance of Blockchain technology for capturing and sharing project knowledge. Consequently, the results of the study aimed to fill a gap in the existing literature by undertaking a comprehensive analysis of the unrealized potential of Blockchain technology to improve knowledge capture and sharing in the project management environment.

Bit-width Aware Generator and Intermediate Layer Knowledge Distillation using Channel-wise Attention for Generative Data-Free Quantization

  • Jae-Yong Baek;Du-Hwan Hur;Deok-Woong Kim;Yong-Sang Yoo;Hyuk-Jin Shin;Dae-Hyeon Park;Seung-Hwan Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.11-20
    • /
    • 2024
  • In this paper, we propose the BAG (Bit-width Aware Generator) and the Intermediate Layer Knowledge Distillation using Channel-wise Attention to reduce the knowledge gap between a quantized network, a full-precision network, and a generator in GDFQ (Generative Data-Free Quantization). Since the generator in GDFQ is only trained by the feedback from the full-precision network, the gap resulting in decreased capability due to low bit-width of the quantized network has no effect on training the generator. To alleviate this problem, BAG is quantized with same bit-width of the quantized network, and it can generate synthetic images, which are effectively used for training the quantized network. Typically, the knowledge gap between the quantized network and the full-precision network is also important. To resolve this, we compute channel-wise attention of outputs of convolutional layers, and minimize the loss function as the distance of them. As the result, the quantized network can learn which channels to focus on more from mimicking the full-precision network. To prove the efficiency of proposed methods, we quantize the network trained on CIFAR-100 with 3 bit-width weights and activations, and train it and the generator with our method. As the result, we achieve 56.14% Top-1 Accuracy and increase 3.4% higher accuracy compared to our baseline AdaDFQ.

A Study on the Relationship between Customer and Supplier Network and Innovation Performance: Focused on Mediating Effect of T-Shaped Skill (고객 및 공급자 네트워크와 혁신성과 간의 관계에 대한 연구: T자형 기술의 매개효과를 중심으로)

  • Jeong, Tae-Seog
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.93-110
    • /
    • 2015
  • The purpose of this study is to identify the role of T-shaped skill between customer/supplier network and innovation performance of firms. To manage effectively the relationship between collaborative firms, firms need to have a prior related knowledge. The premise of absorptive capacity is that the organization needs prior related knowledge to recognize, assimilate, and apply new knowledge. In this context, T-shaped skill facilitates the learning of new related knowledge. The skill is thus a critical component of innovative capabilities. We found that T-shaped skill plays a mediating role in the relationship between networks and innovation performance. The conclusions and implications are discussed.