• Title/Summary/Keyword: knowledge conversion

Search Result 165, Processing Time 0.027 seconds

Available Technology and Integrated Management Plan for Energy-positive in the Sewage Treatment Plant (에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안)

  • Song, Minsu;Kim, Hyoungho;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • Because of the intensified environmental problems such as climate change and resource depletion, sewage treatment technology focused on energy management has recently attracted attention. The conversion of primary sludge from the primary sedimentation tank and excessive sludge from the secondary sedimentation tank into biogas is the key to energy-positive sewage treatment. In particular, the primary sedimentation tanks recover enriched biodegradable organic matter and anaerobic digestion process produces methane from the organic wastes for energy production. Such technologies for minimizing oxygen demand are leading the innovation regarding sewage treatment plants. However, sewage treatment facilities in Korea lack core technology and operational know-how. Actually, the energy potential of sewage is higher than sewage treatment energy consumption in the sewage treatment, but current processes are not adequately efficient in energy recovery. To improve this, it is possible to apply chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS), and anaerobic membrane bioreactor (AnMBR) to the primary sedimentation tank. To maximize the methane production of sewage treatment plants, organic wastes such as food waste and livestock manure can be digested. Additionally, mechanical pretreatment, thermal hydrolysis, and chemical pretreatment would enhance the methane conversion of organic waste. Power generation systems based on internal combustion engines are susceptible to heat source losses, requiring breakthrough energy conversion systems such as fuel cells. To realize the energy positive sewage treatment plant, primary organic matter recovery from sewage, biogas pretreatment, and co-digestion should be optimized in the energy management system based on the knowledge-based operation.

Promoting of Social Enterprise and Training System for Social Enterpriser (사회적 기업의 육성과 사회적 기업가 양성 체계)

  • Lee, Yoon-Jung
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.341-348
    • /
    • 2010
  • The aim of this article is suggesting the training system of social enterpriser through the discussion about the promoting of social enterprise to meet the demands of the times. The part of discussion about the promoting of social enterprise addresses the social background, a fundamental concept, directivity, the present condition of social enterprise and the current social enterpriser's training program. The part of proposal about the training system of social enterpriser gives two areas that support social enterprise's establishment and conversion with supply a basic knowledge of social enterprise and deal with expert knowledge and management strategy making preparations as a social enterpriser. These suggestions introduced in the training system should go ahead in phases through the government aids.

Locomotive Scheduling Using Constraint Satisfaction Problems Programming Technique

  • Hwang, Jong-Gyu;Lee, Jong-Woo;Park, Yong-Jin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.1
    • /
    • pp.29-35
    • /
    • 2004
  • Locomotive scheduling in railway systems experiences many difficulties because of the complex interrelations among resources, knowledge and various constraints. Artificial intelligence technology has been applied to solve these scheduling problems. These technologies have proved to be efficient in representing knowledge and rules for complex scheduling problems. In this paper, we have applied the CSP (Constraints Satisfaction Problems) programming technique, one of the AI techniques, to solve the problems associated with locomotive scheduling. This method is more effective at solving complex scheduling problems than available mathematical programming techniques. The advanced locomotive scheduling system using the CSP programming technique is realized based on the actual timetable of the Saemaul type train on the Kyong-bu line. In this paper, an overview of the CSP programming technique is described, the modeling of domain and constraints is represented and the experimental results are compared with the real-world existing schedule. It is verified that the scheduling results by CSP programming are superior to existing scheduling performed by human experts. The executing time for locomotive scheduling is remarkably reduced to within several decade seconds, something requiring several days in the case of locomotive scheduling by human experts.

Market Prediction Methodology for a Medical 3D Printing Business : Focusing on Dentistry (의료분야 3D프린팅 비즈니스 시장규모 예측 연구 : 치과 분야를 중심으로)

  • Kim, Min Kwan;Lee, Jungwoo;Kim, Young Myung;Lee, Kikwang;Han, Chang Hee
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.2
    • /
    • pp.263-277
    • /
    • 2016
  • Recently, 3D printing technology has been considered as a core applicable technology because it brings many improvements such as the development of medical technology, medical customization, and reducing production cost and shortening treatment period. This research suggests a market prediction framework for medical 3D printing business. As an immature market situation, it is important to control some uncertainty for market prediction such as a customers' conversion rate. So we adopt decision making tree (DMT) model which used to choose an optimal decision making among diverse pathway. Among medical industries this paper just focuses on dentistry business. For predicting a 5 year period trend expected market size, we identified some replaceable denture procedure by 3D printing, collected related data, controlled uncertain variables. The result shows that medical 3D printing business could be a market of 28.2 billion won at 1st year and in the end of fifth year it could become on a scale of 61.1 billion won market.

A study on Related Factor and Knowledge of Back Pain in Workers Employed at Cement factory (일부 시멘트 산업근로자의 요통 관련 요인 및 요통 지식에 관한 연구)

  • Kim, Gi-Yeol;Oh, Jung-Lim;Hwang, Kyoung-Ok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.536-543
    • /
    • 2015
  • This study describes on the level of back pain knowledge from a survey that conducted from November 1, 2013 to January 31, 2014 for 82 cement factory workers at C region in Chung-Buk. The survey results showed that 56.1% of workers experienced back pain. Also the number of back pain of workers increased when workers who subjected more stresses from their works, had been growth in urban area and have not satisfied their given works. The survey also show that workers who subjected back pain once, usually they stopped smoking and reduced drinking, and they willing to take education for back pain-reducing. The worker's level of back pain knowledge was relatively low scores as 56.29 points in the 100-point conversion score, specially back pain associated with the posture were the lowest point of 50 points. Knowledge of back pain, a positive correlation was observed. Finally workers experienced back pain and education of back pain had higher willing to receive the education in the future. However, workers were not obtained the knowledge information on back pain indicated lower scores.

Effects of the Orthographic Representation on Speech Sound Segmentation in Children Aged 5-6 Years (5~6세 아동의 철자표상이 말소리분절 과제 수행에 미치는 영향)

  • Maeng, Hyeon-Su;Ha, Ji-Wan
    • Journal of Digital Convergence
    • /
    • v.14 no.6
    • /
    • pp.499-511
    • /
    • 2016
  • The aim of this study was to find out effect of the orthographic representation on speech sound segmentation performance. Children's performances of the orthographic representation task and the speech sound segmentation task had positive correlation in words of phoneme-grapheme correspondence and negative correlation in words of phoneme-grapheme non-correspondence. In the case of words of phoneme-grapheme correspondence, there was no difference in performance ability between orthographic representation high level group and low level group, while in the case of words of phoneme-grapheme non-correspondence, the low level group's performance was significantly better than the high level group's. The most frequent errors of both groups were orthographic conversion errors and such errors were significantly more noticeable in the high level group. This study suggests that from the time of learning orthographic knowledge, children utilize orthographic knowledge for the performance of phonological awareness tasks.

High-performance 94 GHz Single Balanced Mixer Based On 70 nm MHEMT And DAML Technology (70 nm MHEMT와 DAML 기술을 이용한 우수한 성능의 94 GHz 단일 평형 혼합기)

  • Kim Sung-Chan;An Dan;Lim Byeong-Ok;Beak Tae-Jong;Shin Dong-Hoon;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.8-15
    • /
    • 2006
  • In this paper, the 94 GHz, low conversion loss, and high isolation single balanced mixer is designed and fabricated using GaAs-based metamorphic high electron mobility transistors (MHEMTs) with 70 nm gate length and the hybrid ring coupler with the micromachined transmission lines, dielectric-supported air-gapped microstrip lines (DAMLs). The 70 nm MHEMT devices exhibit DC characteristics with a drain current density of 607 mA/mm an extrinsic transconductance of 1015 mS/mm. The current gain cutoff frequency ($f_T$) and maximum oscillation frequency ($f_{max}$) are 320 GHz and 430 GHz, respectively. The fabricated hybrid ring coupler shows wideband characteristics of the coupling loss of $3.57{\pm}0.22dB$ and the transmission loss of $3.80{\pm}0.08dB$ in the measured frequency range of 85 GHz to 105 GHz. This mixer shows that the conversion loss and isolation characteristics are $2.5dB{\sim}>2.8dB$ and under -30 dB, respectively, in the range of $93.65GHz{\sim}94.25GHz$. At the center frequency of 94 GHz, this mixer shows the minimum conversion loss of 2.5 dB at a LO power of 6 dBm To our knowledge, these results are the best performances demonstrated from 94 GHz single balanced mixer utilizing GaAs-based HEMTs in terms of conversion loss as well as isolation characteristics.

Demonstration of Adaptive Analogue Beam Forming in the E-Band

  • Dyadyuk, Val;Stokes, Leigh;Nikolic, Nasiha;Weily, Andrew R.
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.138-145
    • /
    • 2010
  • In this paper, we report the test results of a small-scale prototype that implements an analogue-beam-formed phased antenna array in the E-band. A four-channel dual-conversion receive RF module for 71~76 GHz frequency band has been developed and integrated with a linear end-fire antenna array. Measured performance is very close to the simulated results. An ad-hoc wireless communication system has also been demonstrated. Low BER was measured for an 8PSK data stream at 1.5 Gbps with the receive array beam formed in the direction of arrival of the transmitted signal. To our knowledge this is the first steerable antenna array reported to date in the E-band.

Empirical Design of an On and Off Type Solenoid Actuator For Valve Operation

  • Sung, Baek-Ju;Lee, Eun-Woong;Kim, Hyoung-Eui
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.39-46
    • /
    • 2004
  • Modern users demand that the on and off type solenoid actuator should be smaller, lighter in weight, lower in consumption power, and higher in response time. The complete design satisfying such requirements can be achieved when electromagnetic theories and empirical knowledge are combined. This paper presents various types of empirical coefficients essentially needed for optimal design of a solenoid actuator. The values of these empirical coefficients are obtained through extensive experiments over a great length of time for various kinds of solenoid actuators. We have developed a design program that is composed by combination of governing equations and empirical coefficients, and have also manufactured a prototype solenoid actuator based on the final results of the design program. The propriety of the design program and empirical coefficients have been proven by experiments.