Browse > Article

High-performance 94 GHz Single Balanced Mixer Based On 70 nm MHEMT And DAML Technology  

Kim Sung-Chan (Millimeter-wave INnovation Technology research cetner, Dongguk University)
An Dan (Millimeter-wave INnovation Technology research cetner, Dongguk University)
Lim Byeong-Ok (Department of Electronic Engineering, Dongguk University)
Beak Tae-Jong (Department of Electronic Engineering, Dongguk University)
Shin Dong-Hoon (Millimeter-wave INnovation Technology research cetner, Dongguk University)
Rhee Jin-Koo (Millimeter-wave INnovation Technology research cetner, Dongguk University)
Publication Information
Abstract
In this paper, the 94 GHz, low conversion loss, and high isolation single balanced mixer is designed and fabricated using GaAs-based metamorphic high electron mobility transistors (MHEMTs) with 70 nm gate length and the hybrid ring coupler with the micromachined transmission lines, dielectric-supported air-gapped microstrip lines (DAMLs). The 70 nm MHEMT devices exhibit DC characteristics with a drain current density of 607 mA/mm an extrinsic transconductance of 1015 mS/mm. The current gain cutoff frequency ($f_T$) and maximum oscillation frequency ($f_{max}$) are 320 GHz and 430 GHz, respectively. The fabricated hybrid ring coupler shows wideband characteristics of the coupling loss of $3.57{\pm}0.22dB$ and the transmission loss of $3.80{\pm}0.08dB$ in the measured frequency range of 85 GHz to 105 GHz. This mixer shows that the conversion loss and isolation characteristics are $2.5dB{\sim}>2.8dB$ and under -30 dB, respectively, in the range of $93.65GHz{\sim}94.25GHz$. At the center frequency of 94 GHz, this mixer shows the minimum conversion loss of 2.5 dB at a LO power of 6 dBm To our knowledge, these results are the best performances demonstrated from 94 GHz single balanced mixer utilizing GaAs-based HEMTs in terms of conversion loss as well as isolation characteristics.
Keywords
Single balanced mixer; 70 nm gate length; MHEMT; DAML; Hybrid ring coupler;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. C. Kim, B. O. Lim, H. S. Lee, T. J. Beak, D.-H. Shin, and J. K. Rhee, '50 nm InGaAs/InAIAs/ GaAs Metarmorphic High Electron Mobility Transistors Using Double Exposure at 50 kV Electron-beam Lithography Without Dielectric Support,' J. Vac. Sci. Technol. B, vol. 22, no. 4, pp. 1807-1810, Jul/Aug 2004   DOI   ScienceOn
2 Sung Chan Kim, Dan An, Woo Suk Sul, Han Shin Lee, Hyo Jong Han, Won Young Uhm, Hyung Moo Park, Sam Dong Kim, Dong-Hoon Shin and Jin Koo Rhee, 'High Conversion Gain Cascade Quadruple Subharmonic Mixer For Millimeter- wave Applications,' Current Applied Physics, vol. 5, no. 3, pp. 231-236, March 2005   DOI   ScienceOn
3 H. S. Lee, D. H. Shin, Y. H. Chun, S. C. Kim, B. O. Lim, T. J. Beak, S. K. Kim, H. C. Park, and J. K. Rhee, 'Design And Characterization Of Micromachined Transmission Line With Dielectric Post For Millimeter-wave Applications,' IEE Electron Lett, vol. 39, no. 25, pp. 1827-1828, 2003   DOI   ScienceOn
4 Stephen A. Maas, Microwave Mixers. Boston· London: Artech House, 1993
5 S. M. Sze, Physics of Semiconductor Devices. NewYork.Chichester Brisbane Toronto. Singapore: JOHN WILEY & SON, 1981
6 K. Nishikawa, S. Sugitani, K. Inoue, T. Ishii, K. Kamogawa, B. Piemas, and K. Araki, 'Low-loss Passive Components On BCB-based 3D MMIC Technology,' in IEEE MIT-S Dig, vol. 3, pp. 1881-1884, 2001   DOI
7 Y. W. Kwon, H. T. Kim, J. H. Park, and Y. K. Kim, 'Low-loss Micromachined Inverted Overlay CPW Lines With Wide Impedance Ranges And Inherent Airbriclge Connection Capability,' IEEE Microw. Wireless Compon: Lett, vol. 11, no. 2, pp. 59-61, 200l   DOI   ScienceOn
8 S. V. Robertson, A R. Brown, L. P. B. Katehi, and G. M. Rebeiz, 'A 10-60-GHz Micromachined Directional Coupler,' IEEE Microw. Theory Tech, vol. 46, no. 11, pp. 1845-1849, 1998   DOI   ScienceOn
9 S. Yang, Z. Hu, N. B. Buchanan, V. F. Fusco, J. A. C. Stewart, Y. Wu, B. M. Armstrong, G. A. Armstrong, and H. S. Gamble, 'Characteristics Of Trenched Coplanar Waveguide For High-Resistivity Si MMIC Applications,' IEEE Trans. Microw. Theory Tech, vol. 46, no. 5, pp. 623-631, 1998   DOI   ScienceOn
10 Y. C. Shih, and T. Itoh, 'Broadband Characterization of Conductor-backed Coplanar Waveguide Using Accurate On-wafer Measurement Techniques,' Microw. J., pp. 95-105, April 1991
11 G. E. Ponchak, and A. N. Downey, 'Characterization Of Thin Film Microstrip Lines On Polyirnide,' IEEE Trans. Components, Packaging, and Manufacturing Technology-Part B, vol 21, no. 2, pp. 171-176, 1998   DOI   ScienceOn
12 R. S. Virk, L. Tran, M. Matloubian, M. Le, M. G. Case, and C. Ngo, 'A Comparison of W-band MMIC Mixers Using InP HEMT Technology,' in IEEE MIT-S Dig, pp. 435-438, 1997   DOI
13 P. M. Smith, D. Dugas, K. Chu, K. Nichols, K. G. Dub, J. Fisher, L. MtPleasant, D. Xu, L. Gunter, A. Vera, R. Lender, and D. Meharry, 'Progress in GaAs Metamorphic HEMT Technology For Microwave Applications,' in Proc. IEEE GaAs IC Symp., pp. 21-24, 2003
14 C. S. Whelan, P. F. Marsh, W. E. Hoke, R. A. McTaggart, C. P. McCarroll, and T. E. Kazior, 'GaAs Metamorphic HEMT (MHEMT): An Attractive Alternative To InP HEMTs For High Perlormance Low Noise And Power Applications,' in Proc. Indium Phosphide and Related Materials, pp. 337-340, 2000
15 K. W. Chang, H. Wang, K. L. Tan, S. B. Bui, T. H. Chen, G. S. Dow, J. Berenz, T. N. Ton, D. C. Garske, T. S. Lin, and L. C. T. Liu, 'A W-Band Monolithic Downconverter,' IEEE Trans. Microw. Theory Tech, vol. 39, no. 12, pp, 1972-1979, 1991   DOI   ScienceOn
16 A. R. Barnes, P. Munday, R. Jennings, and M. T. Moore, 'A Comparison Of W-band Monolithic Resistive Mixer Architectures,' in IEEE MIT-S Dig, pp. 1867-1870, 2002   DOI