• Title/Summary/Keyword: kinetic formulation

Search Result 48, Processing Time 0.021 seconds

Optimal Reserve Allocation to Maximize Kinetic Energy in a Wind Power Plant

  • Yoon, Gihwan;Lee, Hyewon;Lee, Jinsik;Yoon, Gi-Gab;Park, Jong Keun;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1950-1957
    • /
    • 2015
  • Modern wind generators (WGs) are forced or encouraged to participate in frequency control in the form of inertial and/or primary control to improve the frequency stability of power systems. To participate in primary control, WGs should perform deloaded operation that maintains reserve power using speed and/or pitch-angle control. This paper proposes an optimization formulation that allocates the required reserve to WGs to maximize the kinetic energy (KE) stored in a wind power plant (WPP). The proposed optimization formulation considers the rotor speed margin of each WG to the maximum speed limit, which is different from each other because of the wake effects in a WPP. As a result, the proposed formulation allows a WG with a lower rotor speed to retain more KE in the WPP. The performance of the proposed formulation was investigated in a 100-MW WPP consisting of 20 units of 5-MW permanent magnet synchronous generators using an EMTP-RV simulator. The results show that the proposed formulation retains the maximum amount of KE with the same reserve and successfully increases the frequency nadir in a power system by releasing the stored KE in a WPP in the case of a disturbance.

SOLAR MICROWAVE BURSTS AND ELECTRON KINETICS

  • LEE JEONGWOO;BONG SU-CHAN;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.63-73
    • /
    • 2003
  • Solar flares present a number of radiative characteristics indicative of kinetic processes of high energy particles. Proper understanding of the kinetic processes, however, relies on how well we can separate the acceleration from transport characteristics. In this paper, we discuss microwave and hard X-ray bursts as a powerful tool in investigating the acceleration and transport of high energy electrons. After a brief review of the studies devoted to the kinetic process of solar flare particles, we cast them into a simple formulation which allows us to handle the injection, trap, and precipitation of flare electrons self-consistently. The formulation is then taken as a basis for interpreting and analyzing a set of impulsive and gradual bursts occurred on 2001 April 6 observed with the Owens Valley Solar Array, and HXT/WBS onboard Yohkoh satellite. We quantify the acceleration, trap, and precipitation processes during each burst in terms of relevant time scales, and also determine ambient density and magnetic field. Our result suggests that it should be the acceleration property, in particular, electron pitch angle distribution, rather than the trap condition, that is mainly responsible for the distinctive properties of the impulsive and gradual flares.

A study on the non-linear analysis of the elastic catenary cable considering kinetic damping (동적감쇠를 고려한 탄성 현수선 케이블의 비선형 해석에 관한 연구)

  • 한상을;정명채;이진섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.331-338
    • /
    • 2000
  • In this paper, a non-linear finite element formulation for the spatial cable-net structures is simulated and using this formulation, the characteristics of structural behaviors for the elastic catenary cable are examined In the simulating procedure for the elastic catenary cable, nodal forces and tangential stiffness matrices are derived using catenary parameters of the exact solutions by a governing differential equation of catenary cable, cable self-weights and unstressed cable length. Dynamic Relaxation Method that considers kinetic damping is used for the structure analysis and Newton Raphson Method is used to verify the accuracy of solutions. In the analysis of two dimensional cable, the results obtain from the elastic catenary elements are shown more accurate than does of truss elements and in the case of spatial cable-net structures, Dynamic Relaxation Method is more stable to be converged than Newton Raphson Method.

  • PDF

A Study on the Effect of Piston Pin Offset on a Piston Motion and Kinetic Energy Loss (피스톤핀 옵셋이 피스톤운동과 운동에너지 손실에 미치는 영향에 관한 연구)

  • Han, D.J.;Choi, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.22-33
    • /
    • 1993
  • A theoretical analysis of predicting the detailed motion of a piston-crank mechanism within piston-guide clearance is presented, and the analysis is applied to the piston motion in a gasoline engine. A piston movement program is developed to calculate the piston attitude relative to the bore, the piston to bore impact velocity and kinetic energy loss and the net transverse force acting on the piston. This paper presents the formulation of a set of differential equations governing the transverse and rotational motion of a piston. These equations of motion were solved by well established Runge-Kutta method. As a result of this study, it is possible to predict the effects of piston geometry and piston pin offset on a piston motion and kinetic energy loss.

  • PDF

CONVERGENCE OF APPROXIMATE SOLUTIONS TO SCALAR CONSERVATION LAWS BY DEGENERATE DIFFUSION

  • Hwang, Seok
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.145-155
    • /
    • 2007
  • In this paper, we show the convergence of approximate solutions to the convective porous media equation using methodology developed in [8]. First, we obtain the approximate transport equation for the given convective porous media equation. Then using the averaging lemma, we obtain the convergence.

Exploring the Relationship between the Kinetic Energy and Intensity of Rainfall in Sangju, Korea

  • Van, Linh Nguyen;Le, Xuan-Hien;Yeon, Minho;Thi, Tuyet-May Do;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.151-151
    • /
    • 2022
  • The impact of raindrops on the soil surface causes soil detachment, which may be estimated by measuring the kinetic energy (KE) of the raindrops. Since direct measurements of rainfall force on ground surfaces are not generally available, empirical equations are an alternative option to estimate KE from rainfall intensity (I), which has the greatest influence over soil erosion and is easily accessible. Establishing the optimal formulation for the relationship between kinetic energy and rainfall intensity has proven to be difficult. Thus, this research considered thirty-seven rainfall events observed from June 2020 to December 2021 using a laster optical disdrometer erected in Kyungpook National University to examine the characteristics of KE-I relationships. We concentrated our discussion on the formation of two different expressions of the KE, including KE expenditure (KEexp) and KE content (KEcon). The following conclusions were drawn: (1) We employed statistical analysis to demonstrate that the KEexp is more suitable expression for establishing an empirical rule between KE and I than the KEcon. (2) A power-law model was used to find the best correlation between KEexp-I relationship, whereas the best match between KEcon and I were found using an exponential equation.

  • PDF

Development of Modified Phenylalanine Ammonia-lyase for the Treatment of Phenylketonuria

  • Kim, Woo-Mi
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.104-110
    • /
    • 2009
  • Phenylketonuria (PKU) is an inherited metabolic disorder caused by mutations in the phenylalanine catabolic enzyme, phenylalanine hydroxylase (PAH). The use of phenylalanine ammonia-lase (PAL) by oral and parenteral routes as a therapeutic drug for PKU has been severely limited due to inactivation by intestinal proteolysis and immune reactions. PEGylation was applied to PAL to reduce the degrees of antigenicity and proteolytic inactivation. Kinetic experiments with native PAL and pegylated PALs were performed, and pH stability, temperature stability, and protease susceptibility were evaluated. Enzyme linked immunosorbent assay (ELISA) was carried out to measure the immune complex between pegylated PALs and antiserum that had been extracted from a PAL-immunized mouse. Pegylated PAL, especially branched pegylated PAL (10 kDa, 1:32), was more active for phenylalanine and more stable in pancreatic proteases than native PAL. Native PAL was optimal at pH 8.5, corresponding to the average pH range of the small intestine; the same finding was noted for pegylated PALs. All linear and branched pegylated PALs had low reactivity with mouse antiserum, especially the 1:16 formulation with linear 5-kDa PEG and the 1:32 formulation with branched 10-kDa PEG. Therefore, we suggest the 1:32 formulation with branched 10-kDa PEG as the most promising formulation for enzyme replacement therapy.

Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging (영역분할조건평균법에 근거한 난류예혼합화염내 난류운동에너지 생성에 관한 연구)

  • Im, Yong-Hoon;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.49-56
    • /
    • 2003
  • Mathematical formulation of the zone conditional two-fluid model is established to consider flame-generated turbulence in premixed turbulent combustion. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin flamelets. The transverse component of rms velocities in burned zone become larger than axial component in the core of turbulent flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface.

  • PDF

Free vibration and elastic analysis of shear-deformable non-symmetric thin-walled curved beams: A centroid-shear center formulation

  • Kim, Nam-Il;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.19-33
    • /
    • 2005
  • An improved shear deformable thin-walled curved beam theory to overcome the drawback of currently available beam theories is newly proposed for the spatially coupled free vibration and elastic analysis. For this, the displacement field considering the shear deformation effects is presented by introducing displacement parameters defined at the centroid and shear center axes. Next the elastic strain and kinetic energies considering the shear effects due to the shear forces and the restrained warping torsion are rigorously derived. Then the equilibrium equations are consistently derived for curved beams with non-symmetric thin-walled sections. It should be noticed that this formulation can be easily reduced to the warping-free beam theory by simply putting the sectional properties associated with warping to zero for curved beams with L- or T-shaped sections. Finally in order to illustrate the validity and the accuracy of this study, finite element solutions using the isoparametric curved beam elements are presented and compared with those in available references and ABAQUS's shell elements.

General Theory for Free Vibration and Stability Analysis of Thin-walled Space Beam-Columns and Frames (박벽 공간 보-기둥과 뼈대구조의 자유진동 및 안정성 해석을 위한 일반이론)

  • 김성보;구봉근;한상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.239-246
    • /
    • 1997
  • The general formulation of free vibration and stability analysis of unsymmetric thin-walled space frames and beam-columns is presented. The kinetic and total potential energy is derived by applying the extended virtual work principle, introducing displacement parameters defined at the arbitrarily chosen axis and including second order terms of finite semitangential rotations. In formulating the finite element procedure, cubic Hermitian polynomials are utilized as shape functions of the two node space frame element. Mass, elastic stiffness, and geometric stiffness matrices for the unsymmetric thin-walled section are evaluated. In order to illustrate the accuracy and practical usefulness of this formulation, finite element solutions for the free vibration and stability problems of thin-walled beam-columns and space frames are presented and compared with available solutions.

  • PDF