Browse > Article
http://dx.doi.org/10.5303/JKAS.2003.36.spc1.063

SOLAR MICROWAVE BURSTS AND ELECTRON KINETICS  

LEE JEONGWOO (Physics Department, New Jersey Institute of Technology)
BONG SU-CHAN (Astronomy Program, SEES, Seoul National University)
YUN HONG SIK (Astronomy Program, SEES, Seoul National University)
Publication Information
Journal of The Korean Astronomical Society / v.36, no.spc1, 2003 , pp. 63-73 More about this Journal
Abstract
Solar flares present a number of radiative characteristics indicative of kinetic processes of high energy particles. Proper understanding of the kinetic processes, however, relies on how well we can separate the acceleration from transport characteristics. In this paper, we discuss microwave and hard X-ray bursts as a powerful tool in investigating the acceleration and transport of high energy electrons. After a brief review of the studies devoted to the kinetic process of solar flare particles, we cast them into a simple formulation which allows us to handle the injection, trap, and precipitation of flare electrons self-consistently. The formulation is then taken as a basis for interpreting and analyzing a set of impulsive and gradual bursts occurred on 2001 April 6 observed with the Owens Valley Solar Array, and HXT/WBS onboard Yohkoh satellite. We quantify the acceleration, trap, and precipitation processes during each burst in terms of relevant time scales, and also determine ambient density and magnetic field. Our result suggests that it should be the acceleration property, in particular, electron pitch angle distribution, rather than the trap condition, that is mainly responsible for the distinctive properties of the impulsive and gradual flares.
Keywords
Sun: flares; Sun: radio radiation; Sun: magnetic fields; radiation mechanisms: nonthermal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Scherrer, P. H., et al. 1995, The Solar Oscillations Investigation - Michelson Doppler Imager, Sol. Phys., 162, 129   DOI
2 Silva, A. V. R., Wang, H., & Gary, D. E. 2000, Correlation, of Microwave and Hard X-Ray Spectral Parameters, ApJ, 545, 1116   DOI   ScienceOn
3 Spitzer, L. 1967, The Physics of Fully Ionized Gases (2d ed., New York: Interscience)
4 Takakura, T. & Kai. K. 1966, Energy Distribution of Electrons Producing Microwave Impulsive Bursts and X-Ray Bursts from the Sun, PASJ 18, 57
5 Vilmer, N., Kane, S. R., & Trottet, G. 1982, mpulsive and gradual hard X-ray sources in a solar flare, A&A, 108. 306
6 Yoshimori, M., Okudaira, K., Hirasima, Y., Igarashi, T., Akasaka, M., Takai, Y., Morimoto, K., Watanabe, T., Ohki, K., & Nishimura, J. 1991, The wide band spectrometer on the Solar-A, Sol. Phys., 136, 69   DOI
7 Zirin, H. & Tanaka, K. 1981, Magnetic transients in Bares, ApJ, 250, 791   DOI
8 Miller, J. A. & Steinacker, J. 1992, Stochastic gyroresonant electron acceleration on a low-beta plasma. II - Implications of thermal effects in a solar flare plasma, ApJ, 399, 284   DOI
9 Miller, J. A., Cargill, P. J., Emslie, A. G., Holman, G. D., Dennis, B. R., LaRosa, T. N., Winglee, R. M., Benka, S. G., & Tsuneta, S. 1997, Critical Issues For Understanding Particle Acceleration in Impulsive Solar Flares, J. Geophys. Res., 102, 14631   DOI
10 Moghaddam-Taaheri, E. & Goertz, C. K. 1990, Acceleration of runaway electrons in solar flares, ApJ, 352, 361   DOI
11 Nishio, M., Yaji, K., Kosugi, T., Nakajima, H., & Sakurai, T. 1997, Magnetic Field Configuration in Impulsive Solar Flares Inferred from Coaligned Microwave/X-Ray Images, ApJ, 489, 976   DOI   ScienceOn
12 Petrosian, V. 1982, Structure of the impulsive phase of solar flares from microwave observations, ApJ, 255, L85   DOI
13 Petrosian, V. 1990, Acceleration, transport of and radiation by electrons in impulsive phase of flares, in Basic plasma processes on the sun (A92-30901 12-92) Dordrecht, Netherlands, Kluwer Academic Publishers, p. 391
14 Ramaty, R. 1969, Gyrosynchrotron Emission and Absorption in a Magnetoactive Plasma, ApJ, 158, 753   DOI
15 Sakao, T. 1994, Characteristics of solar flare hard X-ray sources as revealed with the Hard X-ray Telescope aboard the Yohkoh satellite, Ph.D. thesis, University of Tokyo
16 Melrose, D. B. 1980, Plasma Astrophysics, (New York Gordon and Breach)
17 Melrose, D. B. & Brown, J. C. 1976, Precipitation in trap models for solar hard X-ray bursts, MNRAS, 176, 15   DOI
18 Litvinenko, Y. E. 1996, Particle Acceleration in Reconnecting Current Sheets with a Nonzero Magnetic Field, ApJ, 462, 997   DOI   ScienceOn
19 Lee, J., Gary, D. E., Qiu, J., & Gallagher, P. T. 2002, Electron Transport during the 1999 August 20 Flare Inferred from Microwave and Hard X-Ray Observations, ApJ, 572, 609   DOI   ScienceOn
20 Lee, J., Gallagher, P. T., Gary, D. E., Nita, G. M., Choe, G. S., Bong, S.-C., & Yun, H. S. 2003, Halpha;, Extreme-Ultraviolet, and Microwave Obser vations of the 2000 March 22 Solar Flare and Spontaneous Magnetic Reconnection, ApJ, 585, 524   DOI   ScienceOn
21 Lu, E. T. and Petrosian, V. 1988, Rapid temporal evolution of radiation from nothermal electrons in solar flares, ApJ, 327, 405   DOI
22 MacKinnon, A. L. 1991, Collisional scattehng of fast electrons in a coronal magnetic bottle, A&A, 242, 256
23 Marsh, K. A. & Hurford, G. J., 1982, High spatial resolution solar microwave observations, ARA&A, 20, 497   DOI   ScienceOn
24 Melnikov, V. F. 1990, Relationships between Microwave, Hard X ray, and Corpuscular Emissions of Solar Flares, Ph.D. Thesis, Radiophysical Research Institute, Nizhniy Novgorod, Russia
25 Melnikov, V. F. 1994, Particle Acceleration and Capturing in Impulsive and Gradual Bursts, Radiophys. Quant. Electron. 37, 557
26 Melnikov, V. F. & Magun, A. 1998, Spectral Flattening During Solar Radio Bursts At Cm-mm Wavelengths and the Dynamics of Energetic Electrons in a Flare Loop, Sol. Phys., 178, 153   DOI   ScienceOn
27 Melnikov, V. F., Shibasaki, K., & Reznikova, V. E. 2002, Loop-Top Nonthermal Microwave Source in Extended Solar Flaring Loops, ApJ, 580, L85   DOI   ScienceOn
28 Kundu, M. R., White, S. M., Shibasaki, K., Sakurai, T., & Grechmev, V. V. 2001a, Spatial Structure of Simple Spiky Bursts at Microwave/Millimeter Wavelengths, ApJ, 547, 1090   DOI   ScienceOn
29 Kosugi, T., Dennis, B. R., & Kai, K. 1988, Energetic electrons in impulsive and extended solar flares as deduced from flux correlations between hard X-rays and microwave, ApJ, 324, 1118   DOI
30 Kosugi, T., Masuda, S., Makishima, K., Inda, M., Murakami, T., Dotani, T., Ogawara, Y., Sakao, T., Kai, K., & Nakajima, H. 1991, The hard X-ray telescope (HXT) for the Solar-A mission, Sol. Phys., 136, 17   DOI
31 Kundu, M. R., Grechnev, V. V., Garaimov, V. I., & White, S. M. 2001b, Double Loop Configuration of a Flaring Region from Microwave, Extreme Ultraviolet, and X-Ray Imaging Data, ApJ, 563, 389   DOI   ScienceOn
32 Kundu, M. R., Nitta, N., White, S. M., Shibasaki, K., Enome, S., Sakao, T., Kosugi, T., & Sakurai, T. 1995, Microwave and Hard X-Ray Observations of Footpoint Emission from Solar Flares, ApJ, 454, 522   DOI
33 Lee, J. & Gary, D. E. 1994, Spectral evolution of microwaves and hard X-rays in the 1989 March 18 flare and its interpretation, Sol. Phys., 153, 347   DOI
34 Lee, J. & Gary, D. E. 2000, Solar Microwave Bursts and Injection Pitch-Angle Distribution of Flare Electrons, ApJ, 543, 457   DOI   ScienceOn
35 Lee, J., Gary, D. E., & Zirin, H. 1994, Flat microwave spectra seen at X-class flare, Sol. Phys., 152, 409   DOI
36 Lee, J., Gary, D. E., & Shibasaki, K. 2000, Magnetic Trapping and Electron Injection in Two Contrasting Solar Microwave Bursts, ApJ, 531, 1109   DOI   ScienceOn
37 Holman, G. D. 1985, Acceleration ofrunaway electrons and Joule heating in solar flares, ApJ, 293, 584   DOI
38 Hamilton, R. J. & Petrosian, V. 1992, Stpchastic acceleration of electrons. I - Effects of collisions in solar flares, ApJ, 398, 350   DOI
39 Hanaoka, Y. 1996, Flares and Plasma Flow Caused by Interacting Coronal Loops, Sol. Phys., 165, 275   DOI
40 Hanaoka, Y. 1997, Double-Loop Conflguration of Solar Flares, Sol. Phys., 173, 319   DOI   ScienceOn
41 Holman, G. D., Kundu, M. R., & Papadopoulos, P. 1982, Electron pitch angle scattering and the impulsive phase microwave and hard X-ray emissioii from solar flares, ApJ, 257, 354   DOI
42 Kai., K. 1986, Can observed hard X-ray and microwave flux from solar flares be explained by a single electron population?, Sol. Phys., 104, 235   DOI
43 Kai, K. Kosugi, T., & Nitta, N. 1985, Flux relations between hard X-rays and microwaves for both impulsive and extended solar flares, PASP, 37, 155
44 Kemiel, C. F. & Petscheck, H. E. 1966, Limit on stably trapped particle fluxes, J. Geophys. Res., 71, 1   DOI
45 Klein, K.-L., Trottet, G., & Magun, A. 1986, Microwave diagnostics of energetic electrons in flare, Sol. Phys., 104, 243   DOI
46 Fleishman, G. D. & Melnikov, V. F. 2003, Gyrosynchrotron Emission from Anisotropic Electron Distribution, ApJ, 587, 823   DOI   ScienceOn
47 Bai, T. 1982, Transport of energetic electrons in a fully ionized hydrogen plasma, ApJ, 308, 912   DOI
48 Gary, D. E. & Hurford, G. J. 1999, OVRO Solar Array Upgrades in Preparation for MAX 2000 in Proceedings of the Nobeyama Symposium, held in Kiyosato, Japan,.0ct. 27-30, 1998, (Eds.) T. S. Bastian, N. Gopalswamy and K. Shibasaki, NRO Report No. 479., p.429-432
49 Aschwanden, M. J., Schwartz, R. A., & Dennis, B. R. 1998, Deconvolution of Directly Precipitating and Trap-precipitating Electrons in Solar Flare Hard X-Rays. II. Compton Gamma Ray Observatory Data Analysis, ApJ, 502, 468   DOI
50 Aschwanden, M. J., Fletcher, L., Sakao, T., Kosugi, T. & Hudson, H. 1999, Deconvolution of Directly Precipitating and Trap-precipitating Electrons in Solar Flare Hard X-Rays. III. Yohkoh Hard X-Ray Telescope Data Analysisi, ApJ, 515, 842   DOI   ScienceOn
51 Bai, T. 1986, Two classes of gamma-ray/Proton flares - Impulsive and gradual, ApJ, 308, 912   DOI
52 Bai, T. & Ramaty, R. 1979, Hard X-ray time profiles and acceleration processes in large solar flares, ApJ, 227, 1072   DOI
53 Bai, T. & Sturrock, P. A., 1989, Classification of solar flares, ARA&A, 27, 421   DOI   ScienceOn
54 Bruggmann, G., Vilmer, N., Klein, K.-L., & Kane, S. R. 1994, Electron trapping in evolving coronal structures during a large gradual hard X-ray/radio burs, Sol. Phys., 149, 171   DOI
55 Cornell, M. E., Hurford, G. J., Kiplinger, A. L., & Dennis, B. R. 1984, The relative timing of microwaves and hard X-rays in solar flares, ApJ, 279, 875   DOI
56 Aschwanden, M. J. 2003, Particle Acceleration and Kinematics in Solar Flares, SPACE SCIENCE REVIEWS, Volume 101, Kluwer Academic Publishers, Dordrecht
57 Crannell, C. J., Frost, K. J., Saba, J. L., Maetzler, C. & Ohki, K. 1978, Impulsive solar X-ray bursts, ApJ, 223, 620   DOI
58 Ding, M. D., Qiu, J., & Wang, H. 2002, Non-LTE Calculation of the Ni I 676.8 Nanometer Line in a Flaring Atmosphere, ApJ, 576, L83   DOI   ScienceOn
59 Aschwanden, M. J. 1998, Deconvolution of Directly Precipitating and Trap-precipitating Electrons in Solar Flare Hard X-Rays. I. Method and Tests, ApJ, 502, 455   DOI
60 Aschwanden, M. J., & Alexander, D. 2001, Flare Plasma Cooling from 30 MK down to 1 MK modeled from Yohkoh, GOES, and TRACE observations during the Bastille Day Event (14 July 2000), Sol. Phys., 204, 93
61 Aschwanden, M. J., Bynum, R. T., Kosugi, T., Hudson, H., and Schwartz, R.A. 1997, Electron Trapping Times and Trap Densities in Solar Flare Loops Measured with Compton and YOHKOH, ApJ, 487, 936   DOI   ScienceOn