• Title/Summary/Keyword: kinetic dynamics

Search Result 189, Processing Time 0.026 seconds

Kinematic and Kinetic Analysis of the Soft Golf Swing using Realistic 3D Modeling Based on 3D Motion Tracking

  • Kim, Yong-Yook;Kim, Sung-Hyun;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.744-749
    • /
    • 2007
  • Kinematic and kinetic analysis has been performed for Soft Golf swings utilizing realistic three dimensional computer simulations based on three dimensional motion tracking data. Soft Golf is a newly developed recreational sport in South Korea aimed to become a safe and easy-to-learn sport for all ages. The advantage of Soft Golf stems from lighter weight of the club and much larger area of the sweet spot. This paper tries to look into kinematic and kinetic aspects of soft golf swings compared to regular golf swing and find the advantages of lighter Soft Golf clubs. For this purpose, swing motions of older aged participants were captured and kinematic analysis was performed for various kinematic parameters such as club head velocity, joint angular velocity, and joint range of motions as a pilot study. Kinetic analysis was performed by applying kinematic data to computer simulation models constructed from anthropometric database and the measurements from the participants. The simulations were solved using multi-body dynamics solver. Firstly, the kinematic parameters such as joint angles were obtained by solving inverse dynamics problem based on motion tracking data. Secondly, the kinetic parameters such as joint torques were obtained by solving control dynamics problem of making joint torque to follow pre-defined joint angle data. The results showed that mechanical loadings to major joints were reduced with lighter Soft Golf club.

A Design of Linearized and Simplited Arm Dynamics for the Manipulator with a Paralled Drive Mechanism (평행사변형 구조를 갖는 매니퓰레이터 동역학의 선형화 및 단순화 설계)

  • 최진태;이병룡;정규원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.855-861
    • /
    • 1989
  • An inertia redistribution technique for liberalizing and reducing the complexity of manipulator dynamics with a parallel drive mechanism is presented in this paper. The dynamic design method is based on eliminating nonlinear terms, such as Coriolis, centrifugal and gravity torque in the kinetic and the potential energy of a manipulator. A set of design criteria regarding the inertia properties of links is derived. The resulting manipulator dynamics can be greatly simplified for each robot. This paper particularly presents that it is possible to completely linearize the manipulator dynamics with a parallel drive mechanism.

Understanding the Use of Coal Char Kinetic Models in commercial CFD Codes (상용 CFD 코드에서 사용되는 촤 반응속도 모델에 대한 이해)

  • Kim, Daehee;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.91-94
    • /
    • 2013
  • Commercial computational fluid dynamics (CFD) codes traditionally rely on the computational efficiency of the simplified single-film apparent char kinetic model to predict char particle temperatures and char conversion rates in pulverized coal boilers. The aim of this study is to evaluate the reliability of the single-film apparent kinetic model and to suggest the importance of proper use of this model. For this, a parametric study was conducted with a consideration of main parameters such as Stefan flow, product species, particle evolution, and kinetic parameters.

  • PDF

Energy Exchanges and Adhesion Probability of Lennard-Jones Cluster Colliding with a Weakly Attractive Static Surface (클러스터-표면 충돌시 부착 확률과 에너지 교환에 대한 분자동력학 시물레이션)

  • Jung, Seung-Chai;Suh, Dong-Uk;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1788-1793
    • /
    • 2008
  • Classical molecular dynamics simulations (MDS) were conducted to simulate nano-sized cluster collisions with a weakly attractive static surface. Energy exchanges associated with the cluster collision and the adhesion probability are discussed. Routes of the energy exchanges and the kinetic energy loss are vastly altered in their mode according to the cluster incident velocity. In the elastic collision regime ($V_0$<0.1), most incident kinetic energy is recovered into the rebounding kinetic energy, but a little loss in the incident kinetic energy causes the cluster adhesion. Dissipated kinetic energy is converted into the rotational energy. In the weakly plastic collision regime (0.1<$V_0$<0.3), the transition from elastic to plastic collision occurs, and a large part of the released potential energy is converted into rebounding translational energy. For strongly plastic collisions ($V_0$>0.3), permanent cluster deformation occurs with extensive collapse of the lattice structure inducing a solid-to-solid phase transition; moreover, most of the cluster kinetic energy is converted into cluster potential and thermal energy.

  • PDF

Nonequilibrium Molecular Dynamics Simulation Study of Kinetic Energy and Velocity Distribution Profiles of Argon Gases in Shock Waves (충격파 내에서 형성되는 아르곤 기체의 운동 에너지 분포와 속도 분포에 대한 비평형 분자동역학 모의실험 연구)

  • Hwang, Hyon-Seok;Lee, Ji-Hye;Kwon, Chan-Ho;Kim, Hong-Lae;Park, Min-Kyu;Kim, Seong-Shik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.147-153
    • /
    • 2011
  • A series of nonequilibrium molecular dynamics(NEMD) simulations are performed to investigate the kinetic energy and velocity distributions of molecules in shock waves. In the simulations, argon molecules are used as a medium gas through which shock waves are propagating. The kinetic energy distribution profiles reveals that as a strong shock wave whose Mach number is 27.1 is applied, 39.6% of argon molecules inside the shock wave have larger kinetic energy than molecular ionization energy. This indicates that an application of a strong shock wave to argon gas can give rise to an intense light. The velocity distribution profiles in z direction along which shock waves propagate clearly represent two Maxwell-Boltzmann distributions of molecular velocities in two equilibrium regions and one bimodal velocity distribution profile that is attributed to a nonequilibrium region. The peak appearing in the directional temperature in z direction is discussed on a basis of the bimodal velocity distribution in the nonequilibrium region.

Research on Acceleration Mechanism of Inflight Particle and Gas Flow Effect for the Velocity Control in Vacuum Kinetic Spray Process (진공상온분사(VKS) 공정에서의 비행입자 가속 기구 및 속도제어를 위한 가스 유량 효과에 관한 연구)

  • Park, Hyungkwon;Kwon, Juhyuk;Lee, Illjoo;Lee, Changhee
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.98-104
    • /
    • 2014
  • Vacuum kinetic spray(VKS) is a relatively advanced process for fabricating thin/thick and dense ceramic coatings via submicron-sized particle impact at room temperature. However, unfortunately, the particle velocity, which is an important value for investigating the deposition mechanism, has not been clarified yet. Thus, in this research, VKS average particle velocities were derived by numerical analysis method(CFD: computational fluid dynamics) connected with an experimental approach(SCM: slit cell method). When the process gas or powder particles are accelerated by a compressive force generated by gas pressure in kinetic spraying, a tensile force generated by the vacuum in the VKS system accelerates the process gas. As a result, the gas is able to reach supersonic speed even though only 0.6MPa gas pressure is used in VKS. In addition, small size powders can be accelerated up to supersonic velocity by means of the drag-force of the low pressure process gas flow. Furthermore, in this process, the increase of gas flow makes the drag-force stronger and gas distribution more homogenized in the pipe, by which the total particle average velocity becomes higher and the difference between max. and min. particle velocity decreases. Consequently, the control of particle size and gas flow rate are important factors in making the velocity of particles high enough for successful deposition in the VKS system.

Mathematical modeling to simulate the adsorption and internalization of copper in two freshwater algae species, Pseudokirchneriella subcapitata and Chlorella vulgaris

  • Kim, Yongeun;Lee, Minyoung;Hong, Jinsol;Cho, Kijong
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.3
    • /
    • pp.298-310
    • /
    • 2021
  • Prediction of the behavior of heavy metals over time is important to evaluate the heavy metal toxicity in algae species. Various modeling studies have been well established, but there is a need for an improved model for predicting the chronic effects of metals on algae species to combine the metal kinetics and biological response of algal cells. In this study, a kinetic dynamics model was developed to predict the copper behavior(5 ㎍ L-1, 10 ㎍ L-1, and 15 ㎍ L-1) for two freshwater algae (Pseudokirchneriella subcapitata and Chlorella vulgaris) in the chronic exposure experiments (8 d and 21 d). In the experimental observations, the rapid change in copper mass between the solutions, extracellular and intracellular sites occurred within initial exposure periods, and then it was slower although the algal density changed with time. Our model showed a good agreement with the measured copper mass in each part for all tested conditions with an elapsed time (R2 for P. subcapitata: 0.928, R2 for C. vulgaris: 0.943). This study provides a novel kinetic dynamics model that is compromised between practical simplicity and realistic complexity, and it can be used to investigate the chronic effects of heavy metals on the algal population.

A FEASIBILITY STUDY OF A NAVIER-STOKES FLOW SOLVER USING A KINETIC BGK SCHEME IN TRANSITIONAL REGIME (Kinetic BGK 기법을 이용한 Navier-Stokes 유동 해석자의 천이 영역 적용성 연구)

  • Cho, M.W.;Yang, T.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.54-61
    • /
    • 2015
  • In the present study, a flow solver using a kinetic BGK scheme was developed for the compressible Navier-Stokes equation. The kinetic BGK scheme was used to simulate flow field from the continuum up to the transitional regime, because the kinetic BGK scheme can take into account the statistical properties of the gas particles in a non-equilibrium state. Various numerical simulations were conducted by the present flow solver. The laminar flow around flat plate and the hypersonic flow around hollow cylinder of flare shape in the continuum regime were numerically simulated. The numerical results showed that the flow solver using the kinetic BGK scheme can obtain accurate and robust numerical solutions. Also, the present flow solver was applied to the hypersonic flow problems around circular cylinder in the transitional regime and the results were validated against available numerical results of other researchers. It was found that the kinetic BGK scheme can similarly predict a tendency of the flow variables in the transitional regime.

DEVELOPMENT OF A 2-D GAS-KINETIC BGK SOLVER FOR CONTINUUM AND TRANSITIONAL FLOWS ON UNSTRUCTURED MESHES (비정렬 격자계에서 연속체 및 천이 영역 유동 해석을 위한 2차원 Gas-Kinetic BGK 해석자 개발)

  • Yang, T.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.49-57
    • /
    • 2014
  • In the present study, 2-D gas-kinetic flow solver on unstructured meshes was developed for flows from continuum to transitional regimes. The gas-kinetic BGK scheme is based on numerical solutions of the BGK simplification of the Boltzmann transport equation. In the initial reconstruction, the unstructured version of the linear interpolation is applied to compute left and right states along a cell interface. In the gas evolution step, the numerical fluxes are computed from the evaluation of the time-dependent gas distribution function around a cell interface. Two-dimensional compressible flow calculations were performed to verify the accuracy and robustness of the current gas-kinetic approach. Gas-kinetic BGK scheme was successfully applied to two-dimensional steady and unsteady flow simulations with strong contact discontinuities. Exemplary hypersonic viscous simulations have been conducted to analyze the performances of the gas-kinetic scheme. The computed results show fair agreement with other standard particle-based approaches for both continuum part and transitional part.

MULTISCALE MODELING OF RADIATION EFFECTS ON MATERIALS: PRESSURE VESSEL EMBRITTLEMENT

  • Kwon, Jun-Hyun;Lee, Gyeong-Geun;Shin, Chan-Sun
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • Radiation effects on materials are inherently multiscale phenomena in view of the fact that various processes spanning a broad range of time and length scales are involved. A multiscale modeling approach to embrittlement of pressure vessel steels is presented here. The approach includes an investigation of the mechanisms of defect accumulation, microstructure evolution and the corresponding effects on mechanical properties. An understanding of these phenomena is required to predict the behavior of structural materials under irradiation. We used molecular dynamics (MD) simulations at an atomic scale to study the evolution of high-energy displacement cascade reactions. The MD simulations yield quantitative information on primary damage. Using a database of displacement cascades generated by the MD simulations, we can estimate the accumulation of defects over diffusional length and time scales by applying kinetic Monte Carlo simulations. The evolution of the local microstructure under irradiation is responsible for changes in the physical and mechanical properties of materials. Mechanical property changes in irradiated materials are modeled by dislocation dynamics simulations, which simulate a collective motion of dislocations that interact with the defects. In this paper, we present a multi scale modeling methodology that describes reactor pressure vessel embrittlement in a light water reactor environment.