DOI QR코드

DOI QR Code

충격파 내에서 형성되는 아르곤 기체의 운동 에너지 분포와 속도 분포에 대한 비평형 분자동역학 모의실험 연구

Nonequilibrium Molecular Dynamics Simulation Study of Kinetic Energy and Velocity Distribution Profiles of Argon Gases in Shock Waves

  • 투고 : 2010.11.05
  • 심사 : 2011.01.20
  • 발행 : 2011.02.05

초록

A series of nonequilibrium molecular dynamics(NEMD) simulations are performed to investigate the kinetic energy and velocity distributions of molecules in shock waves. In the simulations, argon molecules are used as a medium gas through which shock waves are propagating. The kinetic energy distribution profiles reveals that as a strong shock wave whose Mach number is 27.1 is applied, 39.6% of argon molecules inside the shock wave have larger kinetic energy than molecular ionization energy. This indicates that an application of a strong shock wave to argon gas can give rise to an intense light. The velocity distribution profiles in z direction along which shock waves propagate clearly represent two Maxwell-Boltzmann distributions of molecular velocities in two equilibrium regions and one bimodal velocity distribution profile that is attributed to a nonequilibrium region. The peak appearing in the directional temperature in z direction is discussed on a basis of the bimodal velocity distribution in the nonequilibrium region.

키워드

참고문헌

  1. H. M. Mott-Smith, "The solution of the Boltzmann Equation for a Shock Wave", Phys. Rev. Vol. 82, No. 6, pp. 885-892, 1951. 6. https://doi.org/10.1103/PhysRev.82.885
  2. T. P. Cotter, "Collision Kinetics in a Shock Wave", Los Alamos Scientific Laboratory Report LA-1413, Los Alamos National Laboratory, New Mexico, 1952.
  3. J. W. Bond, "Structure of a Shock Front in Argon", Phys. Rev. Vol. 105, No. 6, pp. 1683-1694, 1957. 3. https://doi.org/10.1103/PhysRev.105.1683
  4. A. G. Gaydon and I. R., Hurle, "The Shock Tube in High Temperature Chemical Physics", Reinhod Publishing Co., New York, 1963.
  5. G. A. Bird, "Molecular Gas Dynamics", Clarendon, Oxford, 1976.
  6. G. Phan-Van-Diep, D. Erwin, E. P. Muntz, "Nonequilibrium Molecular Motion in a Hypersonic Shock Wave", Science, Vol. 245, pp. 624-626, 1989. 8. https://doi.org/10.1126/science.245.4918.624
  7. 송태호, "천안함 어뢰 1번 글씨 부위 온도 계산", http://htl.kaist.ac.kr/
  8. R. L. Conger, L. T. Long, J. A. Parks, and J. H. Johnson, "The Spectrum of the Argon Bomb", Appl. Opt., Vol. 4, pp. 273-276, 1965. 3. https://doi.org/10.1364/AO.4.000273
  9. C. R. Jones and W. C. Davis, "Optical Properties of Explosive-Driven Shock Waves in Noble Gases", LA-9475-MS, Los Alamos Nat'l. Lab., Los Alamos, 1982. 9.
  10. M. P. Allen and Tildesley, "Computer Simulation of Liquids", Clarendon, Oxford, 1987.
  11. B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub, "Shock-wave Structure Via Nonequilibrium Molecular Dynamics and Navier-Stokes Continuumm Mechanis", Phys. Rev. A, Vol. 22, pp. 2798-2808, 1980. 12. https://doi.org/10.1103/PhysRevA.22.2798
  12. A. B. Belonoshko, "Atomic Simulation of Shock Wave-Induced Melting in Argon", Science, Vol. 275, No. 5302, pp. 955-957, 1997. 2. https://doi.org/10.1126/science.275.5302.955
  13. B. L. Holian and P. S. Lomdahl, "Plasticity Induced by Shock Waves in Nonequilibrium Molecular Dynamics Simulations", Science, Vol. 280, pp. 2085-2088, 1998. 6. https://doi.org/10.1126/science.280.5372.2085
  14. L. Cai, Q. Chen, J. Zhang, D. Chen, F. Jing, "Atomic Simulation of Shock Compressed Liquid Helium", Physica B Vol. 269, pp. 304-309, 1999. 9. https://doi.org/10.1016/S0921-4526(99)00142-8
  15. J. D. Lambert, "Vibrational and Rotational Relaxation in Gases", Clarendon Press, Oxford, 1977.
  16. H. Hwang, C. H. Kwon, H. L. Kim, S. Kim, M. K. Park, "Development and Application of a Nonequilibrium Molecular Dynamics Simulation Method to Study Shock Waves Propagating in Argon Gas", J. Kor. Inst. Mil. Sci. Technol. Vol 13, pp. 156-163, 2010. 2.
  17. J. P. Hansen and I. R. McDonald, "Theory of Simple Liquids", Academic Press Inc., London, 1986.

피인용 문헌

  1. Characteristics of Damage on Photosensor Irradiated by Intense Illumination : Thermal Diffusion Model vol.15, pp.2, 2012, https://doi.org/10.9766/KIMST.2012.15.2.201