Browse > Article
http://dx.doi.org/10.9766/KIMST.2011.14.1.147

Nonequilibrium Molecular Dynamics Simulation Study of Kinetic Energy and Velocity Distribution Profiles of Argon Gases in Shock Waves  

Hwang, Hyon-Seok (Department of Chemistry, Kangwon National University)
Lee, Ji-Hye (Department of Chemistry, Kangwon National University)
Kwon, Chan-Ho (Department of Chemistry, Kangwon National University)
Kim, Hong-Lae (Department of Chemistry, Kangwon National University)
Park, Min-Kyu (ADD)
Kim, Seong-Shik (ADD)
Publication Information
Journal of the Korea Institute of Military Science and Technology / v.14, no.1, 2011 , pp. 147-153 More about this Journal
Abstract
A series of nonequilibrium molecular dynamics(NEMD) simulations are performed to investigate the kinetic energy and velocity distributions of molecules in shock waves. In the simulations, argon molecules are used as a medium gas through which shock waves are propagating. The kinetic energy distribution profiles reveals that as a strong shock wave whose Mach number is 27.1 is applied, 39.6% of argon molecules inside the shock wave have larger kinetic energy than molecular ionization energy. This indicates that an application of a strong shock wave to argon gas can give rise to an intense light. The velocity distribution profiles in z direction along which shock waves propagate clearly represent two Maxwell-Boltzmann distributions of molecular velocities in two equilibrium regions and one bimodal velocity distribution profile that is attributed to a nonequilibrium region. The peak appearing in the directional temperature in z direction is discussed on a basis of the bimodal velocity distribution in the nonequilibrium region.
Keywords
Shock Wave; Shock Front; Argon Gas; Nonequilibrium Molecular; Dynamics Simulation; Rankine-Hugoniot Equations; Light-Generating Device; Kinetic Energy Distribution Profile; Velocity; Distribution Profile;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub, "Shock-wave Structure Via Nonequilibrium Molecular Dynamics and Navier-Stokes Continuumm Mechanis", Phys. Rev. A, Vol. 22, pp. 2798-2808, 1980. 12.   DOI
2 A. B. Belonoshko, "Atomic Simulation of Shock Wave-Induced Melting in Argon", Science, Vol. 275, No. 5302, pp. 955-957, 1997. 2.   DOI   ScienceOn
3 B. L. Holian and P. S. Lomdahl, "Plasticity Induced by Shock Waves in Nonequilibrium Molecular Dynamics Simulations", Science, Vol. 280, pp. 2085-2088, 1998. 6.   DOI   ScienceOn
4 L. Cai, Q. Chen, J. Zhang, D. Chen, F. Jing, "Atomic Simulation of Shock Compressed Liquid Helium", Physica B Vol. 269, pp. 304-309, 1999. 9.   DOI   ScienceOn
5 J. D. Lambert, "Vibrational and Rotational Relaxation in Gases", Clarendon Press, Oxford, 1977.
6 H. Hwang, C. H. Kwon, H. L. Kim, S. Kim, M. K. Park, "Development and Application of a Nonequilibrium Molecular Dynamics Simulation Method to Study Shock Waves Propagating in Argon Gas", J. Kor. Inst. Mil. Sci. Technol. Vol 13, pp. 156-163, 2010. 2.
7 J. P. Hansen and I. R. McDonald, "Theory of Simple Liquids", Academic Press Inc., London, 1986.
8 T. P. Cotter, "Collision Kinetics in a Shock Wave", Los Alamos Scientific Laboratory Report LA-1413, Los Alamos National Laboratory, New Mexico, 1952.
9 J. W. Bond, "Structure of a Shock Front in Argon", Phys. Rev. Vol. 105, No. 6, pp. 1683-1694, 1957. 3.   DOI
10 H. M. Mott-Smith, "The solution of the Boltzmann Equation for a Shock Wave", Phys. Rev. Vol. 82, No. 6, pp. 885-892, 1951. 6.   DOI
11 송태호, "천안함 어뢰 1번 글씨 부위 온도 계산", http://htl.kaist.ac.kr/
12 A. G. Gaydon and I. R., Hurle, "The Shock Tube in High Temperature Chemical Physics", Reinhod Publishing Co., New York, 1963.
13 G. A. Bird, "Molecular Gas Dynamics", Clarendon, Oxford, 1976.
14 G. Phan-Van-Diep, D. Erwin, E. P. Muntz, "Nonequilibrium Molecular Motion in a Hypersonic Shock Wave", Science, Vol. 245, pp. 624-626, 1989. 8.   DOI   ScienceOn
15 R. L. Conger, L. T. Long, J. A. Parks, and J. H. Johnson, "The Spectrum of the Argon Bomb", Appl. Opt., Vol. 4, pp. 273-276, 1965. 3.   DOI
16 C. R. Jones and W. C. Davis, "Optical Properties of Explosive-Driven Shock Waves in Noble Gases", LA-9475-MS, Los Alamos Nat'l. Lab., Los Alamos, 1982. 9.
17 M. P. Allen and Tildesley, "Computer Simulation of Liquids", Clarendon, Oxford, 1987.