• Title/Summary/Keyword: killed bacteria

Search Result 104, Processing Time 0.029 seconds

A Study on the Prevention of Salmonella Infection by Using the Aggregation Characteristics of Lactic Acid Bacteria

  • Kim, Min-Soo;Yoon, Yeo-Sang;Seo, Jae-Gu;Lee, Hyun-Gi;Chung, Myung-Jun;Yum, Do-Young
    • Toxicological Research
    • /
    • v.29 no.2
    • /
    • pp.129-135
    • /
    • 2013
  • Salmonella is one of the major pathogenic bacteria that cause food poisoning. This study investigated whether heat-killed as well as live Lactobacillus protects host animal against Salmonella infection. Live and heat-killed Lactobacillusacidophilus was administered orally to Sprague-Dawley rats for 2 weeks before the rats were inoculated with Salmonella. Rise in body temperature was moderate in the group that was treated with heat-killed bacteria as compared to the Salmonella control group. The mean amount of feed intake and water consumption of each rat in the heat-killed bacteria group were nearly normal. The number of fecal Salmonellae was comparable between the live and the heat-killed L. acidophilus groups. This finding shows that L. acidophilus facilitates the excretion of Salmonella. Moreover, the levels of pro inflammatory cytokines, including tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 beta, in the heat-killed L. acidophilus group were significantly lower when compared to the levels in the Salmonella control group. These results indicate that nonviable lactic acid bacteria also could play an important role in preventing infections by enteric pathogens such as Salmonella.

Effect of Tea Catechin, EGCG (Epigallocatechin Gallate) on Killing of Oral Bacteria (차 카테킨 EGCG (Epigallocatechin Gallate)의 구강세균에 대한 살균효과)

  • Yu Mi-Ok;Chun Jae-Woo;Oh Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.364-366
    • /
    • 2004
  • The purpose of this work was to investigate the effect oftea catechin, epigallocatechin gallate (EGCG) on killing of oral bacteria. The antibacterial activity of 2.5 mg/ml and 5.0 mg/ml EGCG was investigated for target bacteria of which initial cell number was approximately adjusted to $10^{7}ml$. The antibacterial activity of EGCG was proportional to the concentration according to colony-forming unit(CFU) of target bacteria enumerating on selective and complex media. Streptococcus mutans and Streptococcus sobrinus at 5mg/ml EGCG were completely killed within 8 hrs. Lactobacillus plantarum and Lactobacillus acidophilus were also killed within 2 hrs and 4 hrs under the same conditions, respectively. Oral bacteria at 2.5 mg/ml EGCG were completely killed within 10 hr. Colony numvers of S. mitis and S. salivarius treated with 2.5 mg/ml EGCG were decreased on MS solid media and no colony was observed on the media within 12 hrs. In consequence, EGCG would be a natural and effective compound that kill oral bacteria being caused of bad breath, plaque and gingivitis, and for preventing and treating dental caries.

EFFECTS OF HEAT-KILLED AND SONIC EXTRACTS OF MICROORGANISM ON CULTURED CELLS (세균액 및 세균단백질 추출물이 배양 세포에 미치는 영향)

  • Yu, Young-Dae;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.4
    • /
    • pp.606-618
    • /
    • 2000
  • Dental pulp infection is most commonly caused by extensive dental caries, and some bacterial species invade root canals; bacterial components and products are thought to be associated with the pathogenesis of periapical periodontitis. A principle driving force behind pulpal disease response appears to lie in the host immune system's to bacteria and their products. We examined the production of interleukin $1{\beta}$ (IL-$1{\beta}$) and tumor necrosis factor ${\alpha}$(TNF-${\alpha}$) from human peripheral mononuclear cells, lymphocytes and monocytes stimulated by heat-killed Acitnobacillus actinomycetemcomitans (ATCC 29523), Porphyromonas gingivalis (ATCC 33277) and Prevotella intermedia (ATCC 25611), and also by their sonicated bacterial extracts (SBE), respectively. The effects of three strains of heat-killed bacteria and their SBEs on the morphology of cultured blood cell lines HL-60 (KCLB 10240) and J774A.1 (KCLB 40067) were observed under the inverted microscope. Ultrastructural changes of J774A.1 exposed to heat-killed P. intermedia and its SBE were investigated using transmission electron microscopy. Production of IL-$1{\beta}$ was reduced in human peripheral mononuclear cells after stimulation by sonic bacterial extracts of A. actinomycetemcomitans, P. gingivalis, and P. intermedia. Heat-killed and sonic extract of P. gingivalis inhibited the production of TNF-${\alpha}$ in peripheral mononuclear cells. Production of TNF-${\alpha}$ was inhibited in peripheral monocytes after stimulation by sonic extracts of A. actinomycetemcomitans, P. gingivalis, and P. intermedia. HL-60 and J 774A.1 cells showed granular degeneration after treatment with heat-killed and sonic extracts of A. actinomycetemcomitans, P. gingivalis, and P. intermedia Chromatin margination and shrinkage were observed in 774A.1 treated with heat-killed P. intermedia. Cell wall structure and organelles were destroyed and vacuoles were formed in cytoplasm in J774A.1 treated with P. intermedia sonic extract. These results suggest that A actinomycetemcomitans, P gingivalis and P intermedia may have an important role in the formation and progression of pulpal diseases via both modulation of production of IL-$1{\beta}$ and TNF-${\alpha}$ from blood mononuclear cells and cytopathic effects.

  • PDF

In Vitro Immunopotentiating Activities of Cellular Fractions of Lactic Acid Bacteria Isolated from Kimchi and Bifidobacteria

  • Hur, Haeng-Jeon;Lee, Ki-Won;Kim, Hae-Yeong;Chung, Dae-Kyun;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.661-666
    • /
    • 2006
  • The present study represents the investigation of in vitro immunopotentiating activities of cellular fractions of major lactic acid bacteria found in kimchi (KLAB) and bifidobacteria. The macrophage cells, RAW264.7, were stimulated with heat-killed whole-cell, cell-wall, and cytoplasmic fractions of four strains of KLAB (Leuconostoc mesenteroides, Leuconostoc citreum, Lactobacillus plantarum, and Lactobacillus sake) and two strains of bifidobacteria (Bifidobacterium longum and Bifidobacterium lactis) each, and then the production of nitric oxide (NO) and cytokines including tumor necrosis $factor-\alpha\;(TNF-\alpha)$ and interleukin-6 (IL-6) was measured by Griess and ELISA assays, respectively. Heat-killed wholecell and cell-wall fractions-but not the cytoplasmic fraction-from all strains of KLAB significantly increased the production of NO in RAW264.7 cells, and all fractions from bifidobacteria exerted similar effects. In the production of $TNF-\alpha$, heat-killed whole-cell and cell-wall fractions of L. plantarum showed the strongest effect, followed by L. sake and B. lactis, whereas other KLAB fractions did not exert any effect. In the production of IL-6, only whole-cell and cell-wall fractions of L. plantarum were effective. These results, taken together, indicate that L. plantarum might playa critical role in the immunopotentiating activities of kimchi.

Neuroprotective Effects of Heat-Killed Levilactobacillus brevis KU15152 on H2O2-Induced Oxidative Stress

  • Hyun-Ji Bock;Na-Kyoung Lee;Hyun-Dong Paik
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1189-1196
    • /
    • 2023
  • This study proposed to demonstrate the neuroprotective effects of heat-killed Levilactobacillus brevis KU15152. Heat-killed L. brevis KU15152 showed antioxidant activity similar to that of Lacticaseibacillus rhamnosus GG, in terms of radical scavenging activity. To evaluate the neuroprotective effects, conditioned medium (CM) obtained by incubating heat-killed bacteria in intestinal cells (HT-29) was used through gut-brain axis. CM from L. brevis KU15152 protected neuroblastoma cells (SH-SY5Y) against H2O2-induced oxidative stress. Pretreatment with CM significantly alleviated the morphological changes induced by H2O2. Heat-killed L. brevis KU15152 showed an increased brain-derived neurotrophic factor (BDNF) expression in HT-29 cells. L. brevis KU15152-CM remarkably downregulated the Bax/Bcl-2 ratio, while upregulating the expression of BDNF and tyrosine hydroxylase (TH) in SH-SY5Y cells. Furthermore, L. brevis KU15152-CM reduced caspase-3 activity following H2O2 treatment. In conclusion, L. brevis KU15152 can be potentially used as food materials to avoid neurodegenerative diseases.

Assessment of cell adhesion, cell surface hydrophobicity, autoaggregation, and lipopolysaccharide-binding properties of live and heat-killed Lactobacillus acidophilus CBT LA1 (락토바실러스 아시도필러스 CBT LA1 생균과 사균체의 세포부착력, 자가응집력, 소수성 상호작용력, LPS 결합력에 대한 평가)

  • Shin, Joo-Hyun;Lee, Joong-Su;Seo, Jae-Gu
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • Although studies on probiotics have been performed mostly with viable microbes, the beneficial functions of dead or heat-killed form of probiotic strains have also been examined. In this study, live and heat-killed forms of Lactobacillus acidophilus CBT LA1 were investigated in vitro and in vivo to evaluate the properties necessary for gut barrier protection. Cell surface hydrophobicity (CSH), autoaggregation (AA), cell adhesion, and lipopolysaccharide (LPS)-binding properties were evaluated. In addition, the suppressive effect on LPS-induced interleukin (IL)-8 expression was investigated in HT-29 cells. To identify optimal conditions for CBT LA1 to adhere to HT-29 cells, CBT LA1 cells were heat-treated at 80, 85, 90, 95, 100, or $121^{\circ}C$ for 10 min; cells treated at $80^{\circ}C$ for 10 min showed the highest adhesion. Heat-killed bacteria at $80^{\circ}C$ showed higher levels of LPS-binding, CSH, AA, adhesion to HT-29, and suppression of IL-8 expression than did live CBT LA1. In vivo imaging was performed to evaluate the ability of live or heat-killed CBT LA1 to remove LPS from the intestine in a rat model of infection. At 16 h after infection, fluorescence from FITC-conjugated LPS had mostly disappeared from the intestine of the rats administered with live or heat-killed CBT LA1; the effect was greater with heat-killed CBT LA1 at $80^{\circ}C$. These results suggest that heat-killed CBT LA1 as well as its live form can be applied as a pharmabiotic for protection of the gut barrier.

An Experimental Study on the Bactericidal Activity of Chlorhexidine Gluconate Solution (Chlorhexidine Gluconate Solution의 殺菌效果에 관한 實驗的 연구)

  • Zong, Moon-Shik;Chong, Kyu-Kwan;Kim, Tae-Shik;Kim, Chung-Ock
    • Journal of Environmental Health Sciences
    • /
    • v.13 no.1
    • /
    • pp.47-57
    • /
    • 1987
  • Owing to the modification of testing methods of disinfectants or antiseptics, variations of bacteria according to characteristics of regions and resistance changes of bacteria, it is necessary that the bactericidal activities of disinfectants or antiscptics should be reevaluated nowadays. This study was carried out to reevaluate in the vitro bactericidal activity of Chlorhexidine gluconate solution. The results of experiment were summarized as follows. 1. For Chlorhexidine gluconate solution, minimal inhibitory concentrations of total bacteria taken from sewage water and Legionella bozemanii were $2.0\times 10^{-3}$%, $1.0\times 10^{-2}$%, respectively and were comparatively high. Minimal inhibitory concentration of Shigella flexneri was $1.6\times 10^{-4}$%, and was comparatively low. 2. For total bacteria taken from sewage water, it was killed within 15 minute in 0.1% Chlorhexidine gluconate solution when number of cells was $1.6\times 10^7$/ml. 3. For 0.0125% Chlorhexidine gluconate solution, decimal reduction times of Ps. aeruginosa, S. typhi, E. Coli were 45 sec, 25 sec, 18 sec repectively. For 1%, 0.125% Chlorhexidine gluconate solution, decimal reduction times of Legionella bozemanii were 10 sec, 45 sec respectively. 4. There was significant difference in the bactericidal activity of Chlorhexidine gluconate solution according to temperattire. Phenol coefficient of Chlorhexidine gluconate solution as using Staph. aureus was 100 and comparatively higher than that of other disinfectants. In comparison with other disinfectants, Legionella bozemanii was killed within 5 minutes in 0.02% KMnO$_4$ and 0.125% Chlorhexidine giuconate solution but was not killed within 3 minutes in 1% 0-cresol, 1% Phenol.

  • PDF

Comparison of the immunogenicity between bacterial ghost and formalin-killed bacteria for Vibrio vulnificus

  • Kwon, Se Ryun
    • Journal of fish pathology
    • /
    • v.25 no.3
    • /
    • pp.159-164
    • /
    • 2012
  • Vibrio vulnificus ghosts (VVG) were generated using a mobilizable vector including a thermosensitive expression cassette by conjugation. The vaccine potential of VVG was investigated in mouse. Mice immunized with VVG showed significantly higher antibody titer than those with formalin-killed V. vulnificus. The present study supports the conceptive usefulness of bacterial ghosts as vaccine candidates.

Immunostimulatory Effect of Heat-Killed Probiotics on RAW264.7 Macrophages

  • Noh, Hye-Ji;Park, Jung Min;Kwon, Yoo Jin;Kim, Kyunghwan;Park, Sung Yurb;Kim, Insu;Lim, Jong Hyun;Kim, Byoung Kook;Kim, Byung-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.638-644
    • /
    • 2022
  • Probiotics modulate the gut microbiota, which in turn regulate immune responses to maintain balanced immune homeostasis in the host. However, it is unclear how probiotic bacteria regulate immune responses. In this study we investigated the immunomodulatory effects of heat-killed probiotics, including Lactiplantibacillus plantarum KC3 (LP3), Lactiplantibacillus plantarum CKDB008 (LP8), and Limosilactobacillus fermentum SRK414 (LF4), via phagocytosis, nitric oxide (NO), and pro-inflammatory cytokine production in macrophages. We thus found that heat-killed LP8 could promote the clearance of foreign pathogens by enhancing the phagocytosis of macrophages. Treatment with heat-killed LP8 induced the production of NO and pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β. In addition, heat-killed LP8 suppressed the production of NO and cytokines in LPS-induced RAW264.7 cells, suggesting that heat-killed LP8 exerts immunomodulatory effects depending on the host condition. In sum, these results indicate that heat-killed LP8 possesses the potential for immune modulation while providing a molecular basis for the development of functional probiotics prepared from inactivated bacterial cells.

Probiotic and Antioxidant Properties of Novel Lactobacillus brevis KCCM 12203P Isolated from Kimchi and Evaluation of Immune-Stimulating Activities of Its Heat-Killed Cells in RAW 264.7 Cells

  • Song, Myung Wook;Jang, Hye Ji;Kim, Kee-Tae;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1894-1903
    • /
    • 2019
  • The purpose of this study was to determine the probiotic properties of Lactobacillus brevis KCCM 12203P isolated from the Korean traditional food kimchi and to evaluate the antioxidative activity and immune-stimulating potential of its heat-killed cells to improve their bio-functional activities. Lactobacillus rhamnosus GG, which is a representative commercial probiotic, was used as a comparative sample. Regarding probiotic properties, L. brevis KCCM 12203P was resistant to 0.3% pepsin with a pH of 2.5 for 3 h and 0.3% oxgall solution for 24 h, having approximately a 99% survival rate. It also showed strong adhesion activity (6.84%) onto HT-29 cells and did not produce β-glucuronidase but produced high quantities of leucine arylamidase, valine arylamidase, β-galactosidase, and N-acetyl-β-glucosaminidase. For antioxidant activity, it appeared that viable cells had higher radical scavenging activity in the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay, while in the 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay, heat-killed cells had higher antioxidant activity. Additionally, L. brevis KCCM 12203P showed higher lipid oxidation inhibition ability than L. rhamnosus GG; however, there was no significant difference (p < 0.05) between heat-killed cells and control cells. Furthermore, heat-killed L. brevis KCCM 12203P activated RAW 264.7 macrophage cells without cytotoxicity at a concentration lower than 108 CFU/ml and promoted higher gene expression levels of inducible nitric oxide synthase, interleukin-1β, and interleukin-6 than L. rhamnosus GG. These results suggest that novel L. brevis KCCM 12203P could be used as a probiotic or applied to functional food processing and pharmaceutical fields for immunocompromised people.