Browse > Article

In Vitro Immunopotentiating Activities of Cellular Fractions of Lactic Acid Bacteria Isolated from Kimchi and Bifidobacteria  

Hur, Haeng-Jeon (Department of Food Science and Technology, School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
Lee, Ki-Won (Department of Food Science and Technology, School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
Kim, Hae-Yeong (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
Chung, Dae-Kyun (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
Lee, Hyong-Joo (Department of Food Science and Technology, School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.5, 2006 , pp. 661-666 More about this Journal
Abstract
The present study represents the investigation of in vitro immunopotentiating activities of cellular fractions of major lactic acid bacteria found in kimchi (KLAB) and bifidobacteria. The macrophage cells, RAW264.7, were stimulated with heat-killed whole-cell, cell-wall, and cytoplasmic fractions of four strains of KLAB (Leuconostoc mesenteroides, Leuconostoc citreum, Lactobacillus plantarum, and Lactobacillus sake) and two strains of bifidobacteria (Bifidobacterium longum and Bifidobacterium lactis) each, and then the production of nitric oxide (NO) and cytokines including tumor necrosis $factor-\alpha\;(TNF-\alpha)$ and interleukin-6 (IL-6) was measured by Griess and ELISA assays, respectively. Heat-killed wholecell and cell-wall fractions-but not the cytoplasmic fraction-from all strains of KLAB significantly increased the production of NO in RAW264.7 cells, and all fractions from bifidobacteria exerted similar effects. In the production of $TNF-\alpha$, heat-killed whole-cell and cell-wall fractions of L. plantarum showed the strongest effect, followed by L. sake and B. lactis, whereas other KLAB fractions did not exert any effect. In the production of IL-6, only whole-cell and cell-wall fractions of L. plantarum were effective. These results, taken together, indicate that L. plantarum might playa critical role in the immunopotentiating activities of kimchi.
Keywords
Kimchi lactic acid bacteria; bifidobacteria; immunopotentiating activities; heat-killed whole cells; cell wall; cytoplasm;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
Times Cited By Web Of Science : 11  (Related Records In Web of Science)
연도 인용수 순위
1 Azuma, I. and T. Seya. 2001. Development of immunoadjuvants for immunotherapy of cancer. Int. Immunopharmacol. 1: 1249-1259   DOI   ScienceOn
2 Chandan, R. C. 1999. Enhancing market value of milk by adding cultures. J. Dairy Sci. 82: 2245-2256   DOI   ScienceOn
3 Ding, A. H., C. F. Nathan, and D. J. Stuehr. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. 141: 2407-2412
4 Hirayama, K. and J. Rafter. 2000. The role of probiotic bacteria in cancer prevention. Microbes Infect. 2: 681-686   DOI   ScienceOn
5 Kim, J. Y., H. J. Woo, Y. S. Kim, K. H. Kim, and H. J. Lee. 2003. Cell cycle dysregulation induced by cytoplasm of Lactococcus lactis ssp. lactis in SNUC2A, a colon cancer cell line. Nutr. Cancer 46: 197-201   DOI   ScienceOn
6 Klimp, A. H., E. G. de Vries, G. L. Scherphof, and T. Daemen. 2002. A potential role of macrophage activation in the treatment of cancer. Crit. Rev. Oncol. Hemat. 44: 143- 161   DOI   ScienceOn
7 Surh, Y. J. 2000. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: A short review. Food Chem. Toxicol. 40: 1091- 1097
8 Lee, C. H. 1997. Lactic acid fermented foods and their benefits in Asia. Food Control 8: 259-269   DOI   ScienceOn
9 Kim, J. Y., H. J. Woo, Y. S. Kim, and H. J. Lee. 2002. Screening for antiproliferative effects of cellular components from lactic acid bacteria against human cancer cell lines. Biotechnol. Lett. 24: 1431-1436   DOI   ScienceOn
10 Kim, Y. H., J. O. Yang, and G. E. Ji. 2005. Effect of bifidobacteria on production of allergy-related cytokines from mouse spleen cells. J. Microbiol. Biotechnol. 15: 265- 268   과학기술학회마을   DOI   ScienceOn
11 Arunachalam, K. D. 1999. Role of bifidobacteria in nutrition, medicine and technology. Nutr. Res. 19: 1559-1597   DOI   ScienceOn
12 Tejada-Simon, M. V. and J. J. Pestka. 1999. Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J. Food Prot. 62: 1435-1444   DOI
13 Shon, Y. H., K. S. Nam, and M. K. Kim. 2004. Cancer chemopreventive potential of Scenedesmus spp. cultured in medium containing bioreacted swine urine. J. Microbiol. Biotechnol. 14: 158-161
14 Fujihara, M., M. Muroi, K. Tanamoto, T. Suzuki, H. Azuma, and H. Ikeda. 2003. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: Roles of the receptor complex. Pharmacol. Ther. 100: 171-194   DOI   ScienceOn
15 Kaur, I. P., K. Chopra, and A. Saini. 2002. Probiotics: Potential pharmaceutical applications. Eur. J. Pharm. Sci. 15: 1-9   DOI   ScienceOn
16 Lee, B. H. and G. E. Ji. 2005. Effect of Bifidobacterium cell fractions on IL-6 production in RAW 264.7 macrophage cells. J. Microbiol. Biotechnol. 15: 740-744   과학기술학회마을
17 Kim, J. Y., H. J. Woo, K. H. Kim, E. R. Kim, H. K. Jung, H. N. Juhn, and H. J. Lee. 2003. Antitumor activity of Lactobacillus plantarum cytoplasm on teratocarcinomabearing mice. J. Microbiol. Biotechnol. 12: 998-1001
18 Kim, T. W., J. Y. Lee, S. H. Jung, Y. M. Kim, J. S. Jo, D. K. Chung, H. J. Lee, and H. Y. Kim. 2002. Identification and distribution of predominant lactic acid bacteria in kimchi, a Korean traditional fermented food. J. Microbiol. Biotechnol. 12: 627-635
19 Rafter, J. J. 2002. Scientific basis of biomarkers and benefits of functional foods for reduction of disease risk: Cancer. Br. J. Nutr. 88: S219-S224   DOI
20 Kim, T. W., S. G.. Min, D. H. Choi, J. S. Jo, and H. Y. Kim. 2000. Rapid identification of Lactobacillus plantarum in kimchi using polymerase chain reaction. J. Microbiol. Biotechnol. 10: 881-884   과학기술학회마을
21 Lee, H. Y., J. H. Park, S. H. Seik, S. A. Cho, M. W. Baek, D. J. Kim, Y. H. Lee, and J. H. Park. 2004. Dietary intake of various lactic acid bacteria suppresses type 2 helper T cell production in antigen-primed mice splenocyte. J. Microbiol. Biotechnol. 14: 167-170   DOI   ScienceOn
22 Kim, J. Y., S. K. Lee, S. Hachimura, S. Kaminogawa, and H. J. Lee. 2003. In vitro immunopotentiating activity of cellular components of Lactococcus lactis ssp. lactis. J. Microbiol. Biotechnol. 13: 202-206
23 Lee, K. W., H. J. Lee, Y.-J. Surh, and C. Y. Lee. 2003. Vitamin C and cancer chemoprevention: Reappraisal. Am. J. Clin. Nutr. 78: 1074-1078   DOI
24 Park, E., K. T. Kim, C. J. Kim, C. H. Kim, and H. D. Paik. 2004. Anticarcinogenic and antigenotoxic effects of Bacillus polyfermenticus. J. Microbiol. Biotechnol. 14: 852-858
25 Perdigon, G., C. Maldonado Galdeano, J. C. Valdez, and M. Medici. 2002. Interaction of lactic acid bacteria with the gut immune system. Eur. J. Clin. Nutr. 56: S21-S26   DOI   ScienceOn
26 Jung, H. K., E. R. Kim, G. E. Ji, J. H. Park, S. K. Cha, and S. L. Juhn. 2000. Comparative evaluation of probiotic activities of Bifidobacterium longum MK-G7 with commercial bifidobacteria strains. J. Microbiol. Biotechnol. 10: 147- 153   DOI   ScienceOn
27 Kim, T. U., A. G. Park, G. L. Kim, J. M. Lee, D. G. Jeong, and H. Y. Kim. 2003. Characterization of functional kimchi using Bifidobacterium lactis. Korean J. Food Sci. Technol. 35: 924-927   과학기술학회마을
28 Lee, M. J., Z. L. Zang, E. Y. Choi, H. K. Shin, and G. E. Ji. 2002. Cytoskeleton reorganization and cytokine production of macrophages by bifidobacterial cells and cell-free extracts. J. Microbiol. Biotechnol. 12: 398-405
29 Hirayama, K. and J. Rafter. 1999. The role of lactic acid bacteria in colon cancer prevention: Mechanistic considerations. Antonie Van Leeuwenhoek 76: 391-394