Browse > Article
http://dx.doi.org/10.4014/jmb.2201.01015

Immunostimulatory Effect of Heat-Killed Probiotics on RAW264.7 Macrophages  

Noh, Hye-Ji (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO))
Park, Jung Min (R&D Center, Chong Kun Dang Healthcare (CKDHC))
Kwon, Yoo Jin (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO))
Kim, Kyunghwan (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO))
Park, Sung Yurb (R&D Center, Chong Kun Dang Healthcare (CKDHC))
Kim, Insu (R&D Center, Chong Kun Dang Healthcare (CKDHC))
Lim, Jong Hyun (R&D Center, Chong Kun Dang Healthcare (CKDHC))
Kim, Byoung Kook (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO))
Kim, Byung-Yong (R&D Center, Chong Kun Dang Healthcare (CKDHC))
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.5, 2022 , pp. 638-644 More about this Journal
Abstract
Probiotics modulate the gut microbiota, which in turn regulate immune responses to maintain balanced immune homeostasis in the host. However, it is unclear how probiotic bacteria regulate immune responses. In this study we investigated the immunomodulatory effects of heat-killed probiotics, including Lactiplantibacillus plantarum KC3 (LP3), Lactiplantibacillus plantarum CKDB008 (LP8), and Limosilactobacillus fermentum SRK414 (LF4), via phagocytosis, nitric oxide (NO), and pro-inflammatory cytokine production in macrophages. We thus found that heat-killed LP8 could promote the clearance of foreign pathogens by enhancing the phagocytosis of macrophages. Treatment with heat-killed LP8 induced the production of NO and pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β. In addition, heat-killed LP8 suppressed the production of NO and cytokines in LPS-induced RAW264.7 cells, suggesting that heat-killed LP8 exerts immunomodulatory effects depending on the host condition. In sum, these results indicate that heat-killed LP8 possesses the potential for immune modulation while providing a molecular basis for the development of functional probiotics prepared from inactivated bacterial cells.
Keywords
Immunostimulatory effect; macrophages; heat-killed probiotics;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Rubartelli A, Lotze MT. 2007. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 28: 429-436.   DOI
2 Tumer C, Bilgin HM, Obay BD, Diken H, Atmaca M, Kelle M. 2007. Effect of nitric oxide on phagocytic activity of lipopolysaccharide-induced macrophages: possible role of exogenous L-arginine. Cell Biol. Int. 31: 565-569.   DOI
3 Rubio JM, Astudillo AM, Casas J, Balboa MA, Balsinde J. 2018. Regulation of phagocytosis in macrophages by membrane ethanolamine plasmalogens. Front. Immunol. 9: 1723.   DOI
4 Tanaka Y, Hirose Y, Yamamoto Y, Yoshikai Y, Murosaki S. 2020. Daily intake of heat-killed Lactobacillus plantarum L-137 improves inflammation and lipid metabolism in overweight healthy adults: a randomized-controlled trial. Eur. J. Nutr. 59: 2641-2649.   DOI
5 Nataraj BH, Ali SA, Behare PV, Yadav H. 2020. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb. Cell Fact. 19: 168.   DOI
6 Moradi M, Kousheh SA, Almasi H. 2020. Postbiotics produced by lactic acid bacteria: the next frontier in food safety. Compr. Rev. Food Sci. Food Saf. 19: 3390-3415.   DOI
7 Seong G, Lee S, Min YW, Jang YS, Kim HS, Kim EJ. 2021. Effect of heat-killed Lactobacillus casei DKGF7 on a rat model of irritable bowel syndrome. Nutrients 13: 568.   DOI
8 Taverniti V, Guglielmetti S. 2011. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 6: 261-274.   DOI
9 Kwon M, Lee J, Park S, Kwon OH, Seo J. Roh S. 2020. Exopolysaccharide isolated from Lactobacillus plantarum L-14 has anti-inflammatory effects via the toll-like receptor 4 pathway in LPS-induced RAW 264.7 cells. Int. J. Mol. Sci. 21: 9283.   DOI
10 Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell 124: 783-801.   DOI
11 Kataria J, Li N, Wynn JL, Neu J. 2009. Probiotic microbes: do they need to be alive to be beneficial?. Nutr. Rev. 67: 546-550.   DOI
12 Arango Duque G, Descoteaux A. 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5: 491.   DOI
13 Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, et al. 2020. Paraprobiotics and postbiotics of probiotic Lactobacilli, their positive effects on the host and action mechanisms: a review. Front. Nutr. 7: 570344.   DOI
14 Xiu L, Zhang H, Hu Z, Liang Y, Guo S, Yang M, et al. 2018. Immunostimulatory activity of exopolysaccharides from probiotic Lactobacillus casei WXD030 strain as a novel adjuvant in vitro and in vivo. Food Agric. Immunol. 29: 1086-1105.   DOI
15 Rocha-Ramirez LM, Hernandez-Ochoa B, Gomez-Manzo S, Marcial-Quino J, Cardenas-Rodriguez N, Centeno-Leija S, et al. 2020. Evaluation of immunomodulatory activities of the heat-killed probiotic strain Lactobacillus casei IMAU60214 on macrophages in vitro. Microorganisms 8: 79.   DOI
16 Marshall JS, Warrington R, Watson W, Kim HL. 2018. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 14: 49.   DOI
17 Ivec M, BotiB T, Koren S, Jakobsen M, Weingartl H, Cencic A. 2007. Interactions of macrophages with probiotic bacteria lead to increased antiviral response against vesicular stomatitis virus. Antiviral Res. 75: 266-274.   DOI
18 Doron S, Snydman DR. 2015. Risk and safety of probiotics. Clin. Infect. Dis. 60: S129-134.
19 Topcuoglu S, Gursoy T, OvalO F, Serce O, Karatekin G. 2015. A new risk factor for neonatal vancomycin-resistant Enterococcus colonisation: bacterial probiotics. J. Matern. Fetal. Neonatal. Med. 28: 1491-1494.   DOI
20 Wu Z, Pan D, Guo Y, Sun Y, Zeng X. 2015. Peptidoglycan diversity and anti-inflammatory capacity in Lactobacillus strains. Carbohydr. Polym. 128: 130-137.   DOI
21 Jeong M, Kim JH, Lee JS, Kang SD, Shim S, Jung MY, et al. 2020. Heat-killed Lactobacillus brevis enhances phagocytic activity and generates immune-stimulatory effects through activating the TAK1 pathway. J. Microbiol. Biotechnol. 30: 1395-1403.   DOI
22 Lee HA, Kim H, Lee KW, Park KY. 2016. Dead Lactobacillus plantarum stimulates and skews immune responses toward T helper 1 and 17 polarizations in RAW 264.7 Cells and mouse splenocytes. J. Microbiol. Biotechnol. 26: 469-476.   DOI
23 Erickson KL, Hubbard NE. 2000. Probiotic immunomodulation in health and disease. J. Nutr. 130: 403s-409s.   DOI
24 Hirayama D, Iida T, Nakase H. 2017. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 19: 92.   DOI
25 Yang F, Li X, Yang Y, Ayivi-Tosuh SM, Wang F, Li H, et al. 2019. A polysaccharide isolated from the fruits of Physalis alkekengi L. induces RAW264.7 macrophages activation via TLR2 and TLR4-mediated MAPK and NF-κB signaling pathways. Int. J. Biol. Macromol. 140: 895-906.   DOI
26 Doyle SE, O'Connell RM, Miranda GA, Vaidya SA, Chow EK, Liu PT, et al. 2004. Toll-like receptors induce a phagocytic gene program through p38. J. Exp. Med. 199: 81-90.   DOI
27 Gareau MG, Sherman PM, Walker WA. 2010. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 7: 503-514.   DOI
28 Yan F, Polk DB. 2011. Probiotics and immune health. Curr. Opin. Gastroenterol. 27: 496-501.   DOI
29 Hemarajata P, Versalovic J. 2013. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther. Adv. Gastroenterol. 6: 39-51.   DOI
30 Zheng D, Liwinski T, Elinav E. 2020. Interaction between microbiota and immunity in health and disease. Cell Res. 30: 492-506.   DOI
31 Parkin J, Cohen B. 2001. An overview of the immune system. Lancet (London, England) 357: 1777-1789.   DOI
32 Quin C, Estaki M, Vollman DM, Barnett JA, Gill SK, Gibson DL. 2018. Probiotic supplementation and associated infant gut microbiome and health: a cautionary retrospective clinical comparison. Sci. Rep. 8: 8283.   DOI