DOI QR코드

DOI QR Code

A Study on the Prevention of Salmonella Infection by Using the Aggregation Characteristics of Lactic Acid Bacteria

  • Received : 2013.06.07
  • Accepted : 2013.06.27
  • Published : 2013.06.30

Abstract

Salmonella is one of the major pathogenic bacteria that cause food poisoning. This study investigated whether heat-killed as well as live Lactobacillus protects host animal against Salmonella infection. Live and heat-killed Lactobacillusacidophilus was administered orally to Sprague-Dawley rats for 2 weeks before the rats were inoculated with Salmonella. Rise in body temperature was moderate in the group that was treated with heat-killed bacteria as compared to the Salmonella control group. The mean amount of feed intake and water consumption of each rat in the heat-killed bacteria group were nearly normal. The number of fecal Salmonellae was comparable between the live and the heat-killed L. acidophilus groups. This finding shows that L. acidophilus facilitates the excretion of Salmonella. Moreover, the levels of pro inflammatory cytokines, including tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 beta, in the heat-killed L. acidophilus group were significantly lower when compared to the levels in the Salmonella control group. These results indicate that nonviable lactic acid bacteria also could play an important role in preventing infections by enteric pathogens such as Salmonella.

Keywords

References

  1. Santos, R.L., Zhang, S., Tsolis, R.M., Kingsley, R.A., Adams, L.G. and Baumler, A.J. (2001) Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect., 3, 1335-1344. https://doi.org/10.1016/S1286-4579(01)01495-2
  2. Tsolis, R.M., Young, G.M., Solnick, J.V. and Baumler, A.J. (2008) From bench to bedside: stealth of enteroinvasive pathogens. Nat. Rev. Microbiol., 6, 883-892. https://doi.org/10.1038/nrmicro2012
  3. Banerjee, S., Ooi, M.C., Shariff, M. and Khatoon, H. (2012) Antibiotic resistant Salmonella and Vibrio associated with farmed Litopenaeusvannamei. Sci. World J., 2012, 130-136.
  4. Van Meervenne, E., Van Coillie, E., Kerckhof, F.M., Devlieghere, F., Herman, L., De Gelder, L.S., Top, E.M. and Boon, N. (2012) Strain-specific transfer of antibiotic resistance from an environmental plasmid to food borne pathogens. J. Biomed. Biotechnol., 2012, 834598.
  5. McClelland, M., Sanderson, K.E., Spieth, J., Clifton, S.W., Latreille, P., Courtney, L., Porwollik, S., Ali, J., Dante, M., Du, F., Hou, S., Layman, D., Leonard, S., Nguyen, C., Scott, K., Holmes, A., Grewal, N., Mulvaney, E., Ryan, E., Sun, H., Florea, L., Miller, W., Stoneking, T., Nhan, M., Waterston, R. and Wilson, R.K. (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature, 413, 852-856. https://doi.org/10.1038/35101614
  6. Mennechet, F.J., Kasper, L.H., Rachinel, N., Li, W., Vandewalle, A. and Buzoni-Gatel, D. (2002) Lamina propria CD4+ T lymphocytes synergize with murine intestinal epithelial cells to enhance proinflammatory response against an intracellular pathogen. J. Immunol., 168, 2988-2996. https://doi.org/10.4049/jimmunol.168.6.2988
  7. Hack, C.E., Aarden, L.A. and Thijs, L.G. (1997) Role of cytokines in sepsis. Adv. Immunol., 66, 101-195. https://doi.org/10.1016/S0065-2776(08)60597-0
  8. Bhutta, Z.A., Mansoorali, N. and Hussain, R. (1997) Plasma cytokines in paediatric typhoidal salmonellosis: correlation with clinical course and outcome. J. Infect., 35, 253-256. https://doi.org/10.1016/S0163-4453(97)93004-8
  9. Kim, T.S., Hur, J.W., Yu, M.A., Cheigh, C.I., Kim, K.N., Hwang, J.K. and Pyun, Y.R. (2003) Antagonism of Helicobacter pylori by bacteriocins of lactic acid bacteria. J. Food Prot., 66, 3-12. https://doi.org/10.4315/0362-028X-66.1.3
  10. Park, J.H., Lee, Y., Moon, E., Seok, S.H., Cho, S.A., Baek, M.W., Lee, H.Y., Kim, D.J. and Park, J.H. (2005) Immunoenhancing effects of a new probiotic strain, Lactobacillus fermentum PL9005. J. Food Prot., 68, 571-576. https://doi.org/10.4315/0362-028X-68.3.571
  11. Lievin-Le Moal, V., Amsellem, R., Servin, A.L. and Coconnier, M.H. (2002) Lactobacillus acidophilus (strain LB) from the resident adult human gastrointestinal microflora exerts activity against brush border damage promoted by a diarrhoeagenic Escherichia coli in human enterocyte-like cells. Gut, 50, 803-811. https://doi.org/10.1136/gut.50.6.803
  12. Ishikawa, H., Kutsukake, E., Fukui, T., Sato, I., Shirai, T., Kurihara, T., Okada, N., Danbara, H., Toba, M., Kohda, N., Maeda, Y. and Matsumoto, T. (2010) Oral administration of heat-killed Lactobacillus plantarum strain b240 protected mice against Salmonella enterica Serovar Typhimurium. Biosci. Biotechnol. Biochem., 74, 1338-1342. https://doi.org/10.1271/bbb.90871
  13. Handley, P.S., Harty, D.W., Wyatt, J.E., Brown, C.R., Doran, J.P. and Gibbs, A.C. (1987) A comparison of the adhesion, coaggregation and cell-surface hydrophobicity properties of fibrillar and fimbriate strains of Streptococcus salivarius. J. Gen. Microbiol., 133, 3207-3217.
  14. Collado, M.C., Surono, I., Meriluoto, J. and Salminen, S. (2007) Indigenous dadih lactic acid bacteria: cell-surface properties and interactions with pathogens. J. Food Sci., 72, M89-M93. https://doi.org/10.1111/j.1750-3841.2007.00294.x
  15. Jacobsen, C.N., Rosenfeldt Nielsen, V., Hayford, A.E., Møller, P.L., Michaelsen, K.F., Paerregaard, A., Sandstrom, B., Tvede, M. and Jakobsen, M. (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microbiol., 65, 4949-4956.
  16. Kumar, A., Henderson, A., Forster, G.M., Goodyear, A.W., Weir, T.L., Leach, J.E., Dow, S.W. and Ryan, E.P. (2012) Dietary rice bran promotes resistance to Salmonella enteric serovar Typhimurium colonization in mice. BMC Microbiol., 12, 71. https://doi.org/10.1186/1471-2180-12-71
  17. Rodriguez, I., Rodicio, M.R., Guerra, B. and Hopkins, K.L. (2012) Potential international spread of multidrug-resistant invasive Salmonella enterica serovar enteritidis. Emerg Infect. Dis., 18, 1173-1176. https://doi.org/10.3201/eid1807.120063
  18. Maisnier-Patin, S., Berg, O., Liljas, L. and Andersson, D.I. (2002) Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol. Microbiol., 46, 355-366. https://doi.org/10.1046/j.1365-2958.2002.03173.x
  19. van Eerden, E., van den Brand, H., De Vries Reilingh, G., Parmentier, H.K., de Jong, M.C. and Kemp, B. (2004) Residual feed intake and its effect on Salmonella enteritidis infection in growing layer hens. Poult. Sci., 83, 1904-1910. https://doi.org/10.1093/ps/83.11.1904
  20. Wang, K., Waselenchuk, L. and Evered, M.D. (1993) Stimulation of drinking by bacterial endotoxins in the rat. Physiol. Behav., 54, 1005-1009. https://doi.org/10.1016/0031-9384(93)90315-7
  21. Arvizu-Medrano, S.M. and Escartín, E.F. (2005) Effect of acid shock with hydrochloric, citric, and lactic acids on the survival and growth of Salmonella typhi and Salmonella typhimurium in acidified media. J. Food Prot., 68, 2047-2053. https://doi.org/10.4315/0362-028X-68.10.2047
  22. Pelto, L., Isolauri, E., Lilius, E.M., Nuutila, J. and Salminen, S. (1998) Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects. Clin. Exp. Allergy, 28, 1474-1479. https://doi.org/10.1046/j.1365-2222.1998.00449.x

Cited by

  1. Lactobacillus acidophilus attenuates Salmonella-induced intestinal inflammation via TGF-β signaling vol.15, pp.1, 2015, https://doi.org/10.1186/s12866-015-0546-x
  2. Gold nanoparticle labeling based ICP-MS detection/measurement of bacteria, and their quantitative photothermal destruction vol.3, pp.17, 2015, https://doi.org/10.1039/C5TB00223K
  3. Modulation of intestinal barrier function to ameliorate Salmonella infection in mice by oral administration of fermented milks produced with Lactobacillus plantarum MTCC 5690 – a probiotic strain of Indian gut origin vol.65, pp.12, 2016, https://doi.org/10.1099/jmm.0.000366
  4. Gallinarum in experimentally infected layers vol.18, pp.3, 2017, https://doi.org/10.4142/jvs.2017.18.3.291
  5. vol.2017, pp.2314-7156, 2017, https://doi.org/10.1155/2017/6976935
  6. Complete Genome Sequence and Genomic Characterization of Lactobacillus acidophilus LA1 (11869BP) vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00083
  7. Evaluation of Lactic Acid Bacteria on the Inhibition of Vibrio parahaemolyticus Infection and Its Application to Food Systems vol.23, pp.5, 2018, https://doi.org/10.3390/molecules23051238