Journal of the Institute of Electronics Engineers of Korea CI
/
v.40
no.3
/
pp.137-143
/
2003
Key frame extraction has been recognized as one of tile important research issues in video information retrieval. Although progress has been made in key frame extraction, the existing approaches do not evaluate the importance of extracted frame Quantitatively, and Dey are computationally expensive or ineffective. In this Paper, we introduce a new 미해rithm for key frame extraction using shot coverage and distortion. The algorithm finds significant key frames from candidate key frames. When selecting the candidate frames, the coverage rate to the total frames from each frame is computed by using the difference between the adjacent frames in tile shot. The frames within 10$\%$ from the top are selected as the candidates. Then, by comfuting the distortion rate of the candidates against all frames, pick the frames which arc most representative are selected. The performance of the proposed algorithm has been verified by a statistical test. Experiments show that more than 13-50$\%$ improvement has been obtained by the proposed algorithm compared to the existing methods.
Park, Jun-Hyung;Eum, Min-Young;Kim, Myoung-Ho;Choe, Yoon-Sik
Proceedings of the KIEE Conference
/
2005.10b
/
pp.536-538
/
2005
As multimedia data and huge-Quantity video data having been increasingly and commonly used, the key frame algorithm, as one of the methods for manipulating these kinds of data, became an important matter and has been studied for many years. But the formerly proposed key frame extraction methods take much processing time or need complex calculations due to decoding processes. In order to solve these problems which the former methods have and to enhance the key frame extraction efficiency, a novel key frame extraction method in compressed domain is proposed in this paper. In this method we get an edge histogram for each I-frame in DCT domain and then extract the key frames by means of histogram difference metric. Experimental results show that our algorithm achieves fast processing speed and high accuracy.
The effective extraction of key frames from a video stream is an essential task for summarizing and representing the content of a video. Accordingly, this paper proposes a new and fast method for extracting key frames from a compressed video. In the proposed approach, after the entire video sequence has been segmented into elementary content units, called shots, key frame extraction is performed by first assigning the number of key frames to each shot, and then distributing the key frames over the shot using a probabilistic approach to locate the optimal position of the key frames. The main advantage of the proposed method is that no time-consuming computations are needed for distributing the key frames within the shots and the procedure for key frame extraction is completely automatic. Furthermore, the set of key frames is independent of any subjective thresholds or manually set parameters.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.12
/
pp.4533-4551
/
2014
The effective extraction of key frames from a video stream is an essential task for summarizing and representing the content of a video. Accordingly, this paper proposes a new and fast method for extracting key frames from a compressed video. In the proposed approach, after the entire video sequence has been segmented into elementary content units, called shots, key frame extraction is performed by first assigning the number of key frames to each shot, and then distributing the key frames over the shot using a probabilistic approach to locate the optimal position of the key frames. Moreover, we implement our proposed framework in Android to confirm the validity, availability and usefulness. The main advantage of the proposed method is that no time-consuming computations are needed for distributing the key frames within the shots and the procedure for key frame extraction is completely automatic. Furthermore, the set of key frames is independent of any subjective thresholds or manually set parameters.
We propose efficient video retrieval scheme which use fast key frame extraction in DCT domain. Our scheme extract key frame using the edge histogram difference which is extracted in compressed domain for I-frames. And the video retrieval is implemented using Hausdorff distance function about edge histogram of key frame. This approach enables fast content-based video retrieval of the compressed video content without decompression process. Experimental results show our scheme is very fast and efficient.
The Journal of the Korea institute of electronic communication sciences
/
v.8
no.4
/
pp.595-604
/
2013
Currently, registered number of imported vehicles is increasing rapidly over the years. Accordingly, environment improvements of vehicle maintenance company for maintenance of luxury vehicle such as imported vehicle are continuously being made. In this paper, we propose a key frame extraction method based on HSV color model for smart vehicle management system implementation to offer for customer reliability of maintenance vehicle. After automatically recognize the license plates of the vehicle using vehicle license plate recognition system when the vehicle come in the car center, we check the repair history and request of the vehicle based on it. We implement mobile services which provide extracted key frame images to the user after extract key frames from vehicle repair video. In addition, we verify the superiority of key frame extraction method by applying a smart vehicle management system. Finally, we convert the RGB color to HSV color to improve the performance of proposed key frame extraction scheme. As a result, we confirmed that our scheme is more excellence about 30% in terms of recall than RGB color model from the performance evaluations.
In this paper. a key frame extraction algorithm for browsing and searching the summary of a video is proposed. Toward this end, important frames representing a shot are selected according to the correlations among frames. by using the Fourier descriptor which is useful for the shot boundary detection. To quantitatively evaluate the importance of selected frames. a new measure based on correlation coefficients of frames is proposed. If there are several frames with a same importance. another criteria is introduced to break the tie. by computing the partial moment of subframes including each candidate key frame so that the distortion rate is minimized Since a key frame extraction algorithm can be evaluated subjectively. the performance of the proposed algorithm has been verified by a statistical test. Experiments show that more than 20% improvement has been obtained by the proposed algorithm compared to existing methods.
Communications for Statistical Applications and Methods
/
v.10
no.2
/
pp.457-469
/
2003
In this paper, we have proposed the efficient algorithm that can segment the video scene change using a various statistical characteristics obtained from by applying the wavelet transformation for each frames. Our method firstly extracts the histogram features from low frequency subband of wavelet-transformed image and then uses these features to detect the abrupt scene change. Second, it extracts the edge information from applying the mesh method to the high frequency subband of transformed image. We quantify the extracted edge information as the values of variance characteristic of each pixel and use these values to detect the gradual scene change. And we have also proposed an algorithm how extract the proper key frame from segmented video scene. Experiment results show that the proposed method is both very efficient algorithm in segmenting video frames and also is to become the appropriate key frame extraction method.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.9
/
pp.3357-3376
/
2015
Wireless sensor network is an important research topic that has attracted a lot of attention in recent years. However, most of the interest has focused on wireless sensor network to gather scalar data such as temperature, humidity and vibration. Scalar data are insufficient for diverse applications such as video surveillance, target recognition and traffic monitoring. However, if we use camera sensors in wireless sensor network to collect video data which are vast in information, they can provide important visual information. Video sensor networks continue to gain interest due to their ability to collect video information for a wide range of applications in the past few years. However, how to efficiently store the massive data that reflect environmental state of different times in video sensor network and how to quickly search interested information from them are challenging issues in current research, especially when the sensor network environment is complicated. Therefore, in this paper, we propose a fast algorithm for extracting key frames from video and describe the design and implementation of key frame extraction and sharing in Android for wireless video sensor network.
Journal of the Korean Society for information Management
/
v.25
no.4
/
pp.131-148
/
2008
The purposes of the study are to design a key-frame extraction algorithm for constructing the virtual storyboard surrogates and to evaluate the efficiency of the proposed algorithm. To do this, first, the theoretical framework was built by conducting two tasks. One is to investigate the previous studies on relevance and image recognition and classification. Second is to conduct an experiment in order to identify their frames recognition pattern of 20 participants. As a result, the key-frame extraction algorithm was constructed. Then the efficiency of proposed algorithm(hybrid method) was evaluated by conducting an experiment using 42 participants. In the experiment, the proposed algorithm was compared to the random method where key-frames were extracted simply at an interval of few seconds(or minutes) in terms of accuracy in summarizing or indexing a video. Finally, ways to utilize the proposed algorithm in digital libraries and Internet environment were suggested.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.