
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 12, Dec. 2014 4533

Copyright © 2014 KSII

http://dx.doi.org/10.3837/tiis.2014.12.017

A New Framework for Automatic Extraction
of Key Frames Using DC Image Activity

Kang-Wook Kim

Mobile Communication Division of Samsung Electronics Co., Ltd

129, Samsung-ro Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742, Korea

[e-mail: ekans999@gmail.com]

Received September 3, 2014; revised October 26, 2014; accepted October 29, 2014; published December 31, 2014

Abstract

The effective extraction of key frames from a video stream is an essential task for

summarizing and representing the content of a video. Accordingly, this paper proposes a new

and fast method for extracting key frames from a compressed video. In the proposed approach,

after the entire video sequence has been segmented into elementary content units, called shots,

key frame extraction is performed by first assigning the number of key frames to each shot,

and then distributing the key frames over the shot using a probabilistic approach to locate the

optimal position of the key frames. Moreover, we implement our proposed framework in

Android to confirm the validity, availability and usefulness. The main advantage of the

proposed method is that no time-consuming computations are needed for distributing the key

frames within the shots and the procedure for key frame extraction is completely automatic.

Furthermore, the set of key frames is independent of any subjective thresholds or manually set

parameters.

Keywords: Key Frame, Extraction, Compressed Video, Android

4534 Kang-Wook Kim: A New Framework for Automatic Extraction of Key Frames Using DC Image Activity

1. Introduction

Many services, such as VOD (video on demand) and pay television, are provided in digital

form to consumers and a rapidly increasing number of interactive multimedia documents,

including text, audio, and video, are now available. Consequently, it is widely recognized that

there is a need for intelligent management and search methods particularly for visual

information in multimedia documents and digital videos. Efficient access to video data located

in a distributed database is a very difficult task, mainly due to the large bandwidth

requirements imposed by the large amount of video information. Traditionally, video is

represented by numerous consecutive frames, each of which corresponds to a constant time

interval. However, such a representation is not adequate for new emerging multimedia

applications, such as content-based indexing, retrieval, and browsing. Furthermore, tools and

algorithms for the effective organization and management of video archives are still limited

[1]. There is also an essential need to automatically extract key information from images and

videos for the purpose of indexing, fast and easy retrieval, and scene analysis. In order to allow

the user to efficiently browse, select, and retrieve a desired video part without having to deal

directly with GBytes of compressed data, several activities have to be carried out in

preparation for such a user interaction. For videos, a common first step is to segment the

videos into temporal "shots," each representing an event or continuous sequence of actions. A

shot is what is captured by the camera between a record and a stop operation. Further scene

analysis and interpretation can then be performed on such shots. Segmented video sequences

can also be used for browsing, in which only one or a few representative frames, i.e., key

frames of each shot are displayed [2]-[5]. The main goal of the above procedures is to provide

the user a compact and easily understandable overview of the complete stored video

information. Most existing approaches to key frame extraction [6]-[8], based on measuring the

differences between the last selected frame and the remaining frames and extracting a

subsequent key frame if the measured difference exceeds the given threshold, are typically

sequential processes leading to unpredictable results. Particularly, the final number of key

frames for entire sequence can’t be estimated and a large number of key frames or too few key

frames can be allocated. This makes it difficult to predict the capacity needed to store extracted

key frames. Moreover, the dependency on subjective and usually data dependent thresholds,

limits its applicability in fully automated systems and leads to bad results.

This paper proposes a new and fast method for extracting key frames from a compressed

video. The proposed algorithm can operate directly on various MPEG compressed videos.

After the entire video sequence is segmented into elementary content units, called shots, key

frame extraction is performed by first assigning the number of key frames to each shot and

then distributing the key frames using a probabilistic approach to locate the optimal position of

the key frames. The main advantage of the proposed method is that no time-exhaustive

computations are needed for distributing the key frames over the shot, plus the procedure of

key frame extraction is fully automatic. In addition, the set of key frames is independent of any

subjective thresholds or manually given parameters.

Section 2 briefly reviews several previous approach and their drawbacks. In section 3, we

explain the concept of our proposed framework for key frame extraction step by step along

with simple test results. Experimental results on various video sequences are presented in

section 4, demonstrating the performance and validity of the proposed method. Section 5 gives

details of software implementation process of the key frame extraction application in Android,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 12, December 2014 4535

demonstrating the class view and UI structure of the proposed method. Lastly, section 6 gives

some final conclusions.

2. Related Work

The use of key frames to represent the content of a video has been previously discussed in

many research papers as an efficient way of preserving the temporal information of sequence

based on a small amount of data. The underlying assumption is that if these frames are

extracted using an appropriate video sampling method, the visual content of each segment of

the sequence can be easily understood by looking at given samples. Accordingly, such

compact video representation can be suitable for the purpose of video browsing. Furthermore,

for query processes involving the search for video parts containing specific objects, the

concept of key frames can also be useful.

There have been many previous reports on extracting key frames from an entire video

sequence. One simple method for selecting key frames is to take the first frame of each shot.

Whereas a more reliable content representation requires a non-uniform sampling of the video

shot. In [5], Pentland et al. found that the frames at the beginning and the end of a shot, in the

middle of no-motion segments, or in the middle of segments where the camera is tracking a

foreground object, are good key frames to represent the content of a shot. Some other

approaches [3],[6],[7], based on measuring the differences between the last selected frame and

the remaining frames and extracting a subsequent key frame if the measured difference

exceeds the given threshold, are typically sequential processes leading to unpredictable results.

In particular, since the final number of key frames for an entire sequence can not be estimated,

either too large a number of key frames or too few key frames can be allocated, which is

ineffective for indexing and browsing. This also makes it difficult to predict the capacity

needed to store the extracted key frames in spite of reducing the already obtained key frames.

It is also hard, especially in [3] and [6] to relate any parameter value using a threshold setting

to the key frame collection resulting from such a setting. Moreover, the dependency on

subjective and usually data dependent thresholds, limits the applicability to fully automated

systems and produces bad results. A mathematical optimization-based approach to key frame

extraction is presented in [8], where certain measures defined in terms of color features are

used. However, the drawback of this scheme is that no key frames are allocated to a shot with

a short duration.

3. Proposed Key Frame Extraction Algorithm

We propose a new three-step key frame extraction method for efficient video content

representation. A block diagram of the proposed architecture is illustrated in Fig. 1, and

consists of three modules: video segmentation, key frame allocation, and key frame

distribution. These three modules are described in the current section. First the video sequence

is segmented into distinct video shots, then a mathematical analysis of the video information

flow is applied to the frames of each shot. Such an approach provides a more meaningful

description of the video content, therefore, the key frame extraction can be implemented more

efficiently.

4536 Kang-Wook Kim: A New Framework for Automatic Extraction of Key Frames Using DC Image Activity

Video Segmentation

Key Frame Allocation

Key Frame Distribution

M
P

E
G

 V
id

e
o

D
a

ta
b

a
s
e

MPEG Video Stream

Key frames
Key Frame Extraction

Fig. 1. Block diagram of proposed architecture

3.1 Video Segmentation Using DC Image

DC images are spatially reduced versions of original images. Such spatially reduced images,

once extracted, can also be used for other applications beyond scene change detection, for

example, the efficient comparison of video shots, automatic generation of compact documents,

and nonlinear video browsing applications. This section briefly outlines how a DC image and

DC sequence can be efficiently extracted from a compressed video, and illustrates why they

are useful for fast and efficient video segmentation operations. A video stream conforming to

the MPEG standard is generally composed of I, P, and B type frames. A DC image is obtained

from block-wise averages of an 88 block. For the I type frame of an MPEG coded video, each

pixel in the DC image corresponds to a scaled version of the DC coefficient of each DCT

(discrete cosine transform) block. Each DC image is thus reduced 64 times compared to the

original image. The challenge is to also extract DC images from P and B type frames, which

are coded using motion compensation to exploit the temporal redundancy of video. A generic

situation is shown in Fig. 2. Here, refP is the current block of interest, 30 ,, PP are the four

original neighboring blocks from which refP is derived and the motion vector is yx , .

refP

3P

1
P

ow

BlockCurrent

1w

2w 3w

oh
1h

2h 3h

oP

2P

Motion Vector =

= (w
0
,h

0
)

),(yx

),(yx

Fig. 2. Reference block)(refP , motion vectors, and original blocks

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 12, December 2014 4537

The shaded regions in 30 ,, PP are moved by yx , . We are thus interested in deriving the

DC coefficients of refP . By denoting the 2D DCT of an 88 block P as)(PDCT , the linearity

of DCT operations also means that the DC coefficient of)(refPDCT can be expressed as:

3

0

7

0

7

0

00)))((())((

i m l

mli
i
mlref PDCTwPDCT (1)

, for some weighting coefficients i
mlw . The weight iw00 is the ratio of overlaps of block

refP with block iP , i.e., 64/00 ii
i whw . An approximation, called the first-order approximation,

approximates 00))((refPDCT by

3

0

1)(
64

)(

i

i
ii

ref PDC
wh

PDC (2)

This approximation, when applied to B and P type frames, yields good results in practice. Such

approximation only requires motion vector information and DC values in the reference frames.

Several algorithms [9]-[11] to extract DC images from an MPEG compressed video using

DCT DC coefficients in an I type frame and motion compensated DCT DC coefficients in P or

B type frames have already been proposed. Fig. 3 illustrates an original image of size 352240

and its DC image of size 4430.

Fig. 3. Full image at 352240 and DC image at 4430

It has been demonstrated that even at such a low resolution, global image features useful for

specific classes for content-based operations with MPEG compressed video streams are well

preserved. After extracting the DC image from an MPEG compressed video, the next step is to

detect the cuts, i.e., shot boundaries to segment the video into individual shots. To minimize

the influence of non-relevant temporal variations, global frame visual features such as color

and intensity histograms need to be used to detect a shot boundary. The proposed approach

adapts the method proposed in [9] and defines an activity function)(kAF for describing the

relevant difference between frames k and 1k as:

4538 Kang-Wook Kim: A New Framework for Automatic Extraction of Key Frames Using DC Image Activity

i j

k
DC

k
DC jiIjiIkAF),(),()(1 (3)

, where k is the frame index, and),(jiI k
DC means the pixel value at position),(ji in the DC

image.)(kAF measures the relative changes between two consecutive frames, thereby

indicating the magnitude of any changes. An)(kAF curve is used to detect the cuts, as

illustrated in [9]. The method of [9] uses a sliding window to examine a few successive frame

differences. Here, a scene change from frame 1k to k is declared if

1))(kAF is the maximum within a sliding window of size W2 , and

2))(kAF is n times the second largest maximum in the sliding window.

W is set to be smaller than the minimum duration between two scene changes. For example,

setting 15W for a 15 frames/s video means that there cannot be two scene changes within

one second. It has been found that values of n ranging from 2.0-3.0 produce the best result.

This method also reduces false detections in the case of significant object or camera motions.

Fig. 4 illustrates the plot of)(kAF versus k for a 1000-frame clip from a SBS (Seoul

Broadcasting System) TV sports news program. From the)(kAF curve, the video sequence

was determined to consist of 7 shots.

0 100 200 300 400 500 600 700 800 900 1000

2.0x10
2

4.0x10
2

6.0x10
2

8.0x10
2

1.0x10
3

1.2x10
3

1.4x10
3

1.6x10
3 Sliding Window

A
F

(k
)

k

Fig. 4. Plot of)(kAF versus k for 1000 frames

If the entire video sequence is segmented into shots by the above mentioned method, the next

step is that we should properly assign the number of key frames to each shot and then

distribute the key frames over the shot. In the following sections, we will refer to these

procedures.

3.2 Key Frame Allocation to Shots

To represent video shots, it is important to properly decide on the number of key frames (or

representative frames) and then select these key frames from each shot. Generally, this is not

an easy or automatic task because the decision is subjective to each person. Selecting one key

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 12, December 2014 4539

frame for each shot is presented in [12]. However, a single key frame is very often unable to

provide sufficient information about the video content of a given shot, especially for shots

with a long duration. Moreover, important shots of small duration may have no key frames,

while shots of longer duration may be represented by multiple frames with a similar content.

We propose a simple intuitively appealing algorithm for allocating the number of key

frames for each shot. This algorithm may not be optimal, but it allocates key frames to shots

incrementally, one key frame at a time, in a way that yields a good assignment. The basic idea

is that in each of a total of TK key frames, one key frame is allocated where it will do the most

good at this point. Let)(ii KM , called the content function, denote the content of the i th shot

for the key frame allocation of iK key frames. The content function of each shot is defined by

)1(2

2)()(

 iK
iiii LCAFgKM (4)

, where)(nCAFi is the accumulated value of)(kAF from the beginning up to the final

summation position n and ggi is a constant independent of i for simplicity.)(nCAFi can

be calculated as follows:

n

k

i kAFnCAF

1

)()((5)

, where i , k are the shot and frame index, respectively. If the summation of Eq. (3) stretches

through the entire frame within a shot,)(LCAFi can be easily calculated. In)(LCAFi of Eq. (4),

L is the number of frames in the shot.

Let)(mKi denote the total number of key frames allocated to the i th shot after iteration m ,

i.e., after m key frames have been allocated to the shots. Now the request)(mQi associated

with the i th shot after the m th iteration of the allocation algorithm can be defined according

to:

))(()(mKMmQ iii (6)

That is, the request)(mQi after the m th key frame has been assigned is simply the content of

the i th shot as regards its current key frames. The proposed algorithm assigns iK key frames

to shot i as below.

Step 0. Initialize the key frame allocation to one, so that 1)0(iK for each i th shot and

 0m . Set))0(()0(iii KMQ as the initial values of request.

 (The reason for 1)0(iK is that at least one key frame must be allocated to

 each shot.)

 Step 1. Find the shot index j with the maximum request.

Step 2. Set 1)()1(mKmK jj , and set)()1(mKmK ii for each ji , then set

))1(()1(mKMmQ iii .

Step 3. If 1 TKm T , increment m by 1 and go to step 1. Otherwise stop.

T is the number of shots in the entire sequence. This algorithm carries out a very simple and

4540 Kang-Wook Kim: A New Framework for Automatic Extraction of Key Frames Using DC Image Activity

intuitive idea. That is, simply give away key frames to the most needy shot, one key frame at a

time until you run out of key frames. The degree of neediness of each shot is measured based

on the content it will yield if it were to operate with its current key frame assignment.

Table 1. Results of key frame allocation (1,10 gKT , 7T)

Shot index i 1 2 3 4 5 6 7

iK 1 1 1 1 2 2 2

L 50 171 41 93 276 252 209

))0((ii KM 10314 62290 11404 42502 93864 124628 98970

By spreading the given maximal number of key frames TK along the entire video sequence,

each shot of the sequence gets assigned a fraction of the given TK key frames according to its

share of the content relative to the total content of the sequence. Table 1 illustrates the result of

key frame allocation for the)(kAF curve in Fig. 4.

3.3 Key Frame Distribution over a Shot

Here,),,1(iu Kul are the temporal locations of the key frames, while 1un and un are the

breakpoints between the shot segments represented by key frame ul . Notice that 0n and
iKn

are the known temporal beginning and end points of the i th shot. The basic idea can be seen in

Fig. 5 with iK assigned key frame.

shot ishot i-1 shot i+1

...

CAFi (m)

m

...

n0 n1 nKil1

...

...lunu-1 nu lKinKi-1

Fig. 5. Key frame distribution within i th shot using assigned iK key frames

To find the positionb of),,1(iu Kul , we propose a fast and effective which uses a

probabilistic approach to locate the optimal position of the key frames. First, the normalized

)(mCAFi (=)(mNCAFi) is calculated for the i th shot, which is assumed to be composed of

10 nn
iK frames between frame 0n and

iKn .)(mNCAFi is computed as follows:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 12, December 2014 4541

 5.0

)()(

)()(
)()(

0

0
00

nCAFnCAF

nCAFmCAF
nnnIntmNCAF

iKi

ii
Ki

i

i
,

iKnnm ,,0 (7)

, where][xInt represents the integer part of x . Using Eq. (5), the discrete)(mCAFi values that

are not interpolated are normalized into integer values lying between the interval],[0 iKnn .

Next, the histogram)(mH of)(mNCAFi is calculated, then the pmf (probability mass

function))(mP and cdf (cumulative density function))(mF can be obtained from)(mH

using the following relations:

1

)(
)(

0

nn

mH
mP

iK

,

m

n

PmF

0

)()(

 ,
iKnnm ,,0 (8)

The pmf)(mP is referred to as the probability of change in the shot content. Consequently,

only)(mH ,)(mP , and)(mF need to be calculated before distributing the key frames. The

remaining key frame distribution procedure is performed by first computing the value uq such

that iu KuqF /)(then finding xnu such that uqxNCAF)(for iKu ,,1 . From the

above computed un , the key frame positions can be easily decided sequentially as follows:

2

1
 uu

u

nn
l , iKu ,,1 (9)

,where 0n and
iKn are the known temporal beginning and end points of the i th shot.

Compute NCAF
i
(m) from CAF

i
(m)

Compute H(m) of NCAF
i
(m)

Compute pmf P(m), and cdf F(m) from H(m)

Find q such that F(q
u
) = u/K

i
 for u=1,...,K

i

Find u
n
= x such that NCAF

i
(x)=q

u
 for u=1,...,K

i

distribute K
i
 key frames over shot using

l
u
=(n

u
+n

u-1
) / 2 where n

0
, n

Ki
 are known

K
i
 key frames is allocated in shot i

Fig. 6. Flow chart of proposed key frame distribution algorithm

4542 Kang-Wook Kim: A New Framework for Automatic Extraction of Key Frames Using DC Image Activity

This procedure of distributing iK key frames over the i th shot is very simple and fast. In

addition, the proposed method does not require any recursive computations and is performed

sequentially. It is intended that the given key frames are distributed over the shot according to

the probability of a change in the shot content. Fig. 6 illustrates a summary of the steps

involved in the proposed algorithm.

0 100 200 300 400 500 600 700 800 900 1000

0.0

2.0x10
4

4.0x10
4

6.0x10
4

8.0x10
4

1.0x10
5

1.2x10
5

C
A

F
i(m

)

m

Fig. 7. Plot of)(mCAFi versus m for test sequence

Fig. 7 illustrates the plot of)(mCAFi versus m for the same sequence as used in Fig. 4. This

plot shows the level of content variation for each shot. Therefore, based on the slope and

relative magnitude, the importance of each shot can be estimated. The steeper parts correspond

to more substantial changes, whereas and flatter parts indicate a more stationary shot variation.

The proposed algorithm is then used to locate the key frames. The result of the key frame

distribution when using the proposed algorithm is shown in Table 2. The key frames are

arranged in a temporal order and extracted in a content-based manner, instead of just simple

sub-sampling. For a shot with little or no variation, one key frame (e.g. the first frame) is

sufficient. Yet for a long shot or shot with a lot of variations, multiple key frames are chosen.

Table 2 shows the effective condensing of 1000 frames of a TV sports news video clip into 10

key frames. For shots 1-4, only one key frame represents the content of each shot, however, for

shots 5-7, two key frames are selected.

Table 2. Results of key frame distribution for 7 shots

Shot index i 1 2 3 4 5 6 7

Ki 1 1 1 1 2 2 2

lu (u=1,…,Ki) 12 126 183 212
327

557

 666

789

815

951

4. Experimental Results

The proposed key frame extraction method was validated by experiment using several long

video sequences, as listed in Table 3. The test data were digitized at a 704 576(4CIF) spatial

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 12, December 2014 4543

resolution from consumer-grade video recordings of TV broadcasts and then compressed in

MPEG-4 format at 30 frame/s. The sequences were also available as DC sequences, obtained

from MPEG streams with (slightly modified) frame sizes of 88 72. We used HEVC contents

as well, which have a resolution of 1280 720 compressed at 30 frame/s as MP@L9.3.

Table 3. Video sequences used in experiments

Video sequences No. of frames Bit rate min:sec

TV news

(“news.mp4”)
10,121 1.300 Mbps 6:33

music video

(“music.mp4”)
12,541 1.394 Mbps 7:58

sports

(“sport.mp4”)
20,026 1.300 Mbps 11:17

Animation

(“happyfeet.mp4”)
27,630 1,054 Kbps 15:22

Documentary

(“shark.mp4)
36,560 1,354 Kbps 20:22

The reduced DC sequences were first extracted using the algorithm described in section 3.1.

Next, the shot boundaries were detected using the method from section 3.1. Generally, recall

and precision are used as performance criteria for shot boundary detection methods [12]. The

results of the video segmentation are presented in Table 4.

Table 4. Results of video segmentation

Video

sequences

No. of

frames

No. of shots

T
Recall / Precision)5.1(TKT

TV news 10,121 60 0.9153 / 0.8443 90

Music video 12,541 68 0.8992 / 0.8367 102

Sports 20,026 77 0.9029 / 0.8662 116

Animation 27,630 89 0.9123 / 0.8235 134

Documentary 36,560 102 0.9234 / 0.8974 153

Key frame extraction was then performed using the individual shots obtained after video

segmentation. In the experiments, the only parameter set was the maximal number of key

frames. Table 4 depicts the key frame extraction results obtained for the test sequences. The

maximal number of key frames TK was set at 1.5 times the number of shots T for each

sequence. However, TK can be adjusted by the user according to a pictorial summary and

storage capacity. Unlike scene change detection, it is hard to define an objective performance

analysis method for the assessment of a key frame extraction algorithm. To objectively assess

the performance of our proposed method and to compare it with existing method, we define a

criterion function
iSP as Eq. (10) in our own way and refer to it as key frame dissimilarity.

4544 Kang-Wook Kim: A New Framework for Automatic Extraction of Key Frames Using DC Image Activity

1

1 1 1

),(),(
1

1 1

i

jj

i

K

j

M

m

N

n

l

key

l

key
i

S nmfnmf
K

P (10)

where iS means the i th shot and),(mkf jl

key is the pixel value at position),(nm of NM key

frame at temporal location jl . If 1iK in Eq. (10), we take
iSP as 0. Then, we define

i

ST i
PP as the overall performance measure of key frame extraction method for entire

sequence. The smaller value TP has, the more similar selected key frames are. Performance

test has been performed in the following way. The proposed method is compared with Bede

Liu’s method, which is typical scheme for extracting key frame. The reason why we do not

compare our algorithm with other conventional methods such as motion analysis based or shot

boundary based methods is that they are inefficient for video indexing and not easily

applicable to compressed domain scheme due to many computations and unstableness. TP is a

better indicator of performance as similarity or dissimilarity between selected key frames. This

means that if the selected key frames are not similar, these frames are a good representative set

of frames to represent a video shot. The comparison of performance is performed in terms of

overall dissimilarity according to percentage of selected frames. The results are shown in

Table 5.

Table 5. Comparison of performance

% selected frames
Proposed method Bede Liu’s method

Time Dissimilarity, TP Time Dissimilarity , TP

1 % (100 K-frames) 2.7 s 846.78 9.1 s 689.91

2 % (200 K-frames) 5.8 s 1368.15 21.1 s 1213.25

3 % (300 K-frames) 8.1 s 1287.38 31.3 s 1053.96

4 % (400 K-frames) 12.0 s 1112.03 44.3 s 921.12

5 % (500 K-frames) 13.1 s 1253.69 55.3 s 870.14

Fig. 8 shows the plot of
isP vs. shot index i according to TK . As expected, proposed scheme

has better performance than Bede Liu’s method in all cases. When 5% of sequence is selected

as key frames, the proposed method shows 1253.69 of TP , while the Bede Liu’s method

shows 870.14 of TP . It is shown that the key frames selected by proposed method are more

dissimilar on another than those chosen by Bede Liu’s method. It is observed in Fig. 8 that for

some shots, for example, shots 10-15, the dissimilarity in these shots has relatively higher

value than in other shot. Key frame dissimilarity
isP can be computed by Eq. (10) when two

more key frames exist. Because our method selects only one key frame for shots 10-15, we

make zero of the resulting dissimilarity for these shot. Although Bede Liu’s method seems to

have high dissimilarity value for specific shot, the average dissimilarity value of proposed

method is higher than that of Bede Liu’s method as shown in Table 5.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 12, December 2014 4545

0 5 10 15 20 25 30 35 40 45 50 55 60

0

10

20

30

40

50

60
 Bede Liu's method (=0.064)

 Proposed method

ke
y

fr
am

e
di

ss
im

il
ar

it
y,

 P
S

i

shot index i

Fig. 8. Comparison of dissimilarity

isP between key frames for TK (5%)

Shown in Fig. 9 are extracted key frames by using proposed and Bede Liu’s method. As

shown in Fig. 9, proposed method is superior to Bede Liu’s method in respect to dissimilarity

measure and a subjective point of view for shot 9 for 5% selected frames.

Frame 3269 Frame 3367 Frame 3465

(a)

Frame 3222 Frame 3297 Frame 3410

(b)

Fig. 9. Extracted key frames for shot 9 (a) Proposed method (35.68
9
SP) (b) Bede Liu’s method

(21.60
9
SP)

5. Design and Implementation of Key Frame Extraction

In this section, we describe the architectural design of the proposed key frame extraction

method and its implementation on the Android system using the framework described above.

In Android, the functions packaged in the form of library (DLL, SO) or executable file, such as

Assembly, C and C++ can be called on Java layer through JNI (Java Native Interface). JNI

comes from the following reasons: First, the application has to use the system-related

4546 Kang-Wook Kim: A New Framework for Automatic Extraction of Key Frames Using DC Image Activity

functions, while Java does not support or is hard to implement. Second, there are many useful

libraries written in other languages. Java programs can reuse them. Third, for higher

performance issues, the developer has to use assembly or C/C++ code to implement some

specific program modules [13][14]. For these requirements, Android platform supports the

JNI method. In this paper, we use JNI because of the second reason, for reusing already

implemented C codes for key frame extraction. JNI layer is exchanging the key frame data

between Application UI and MPEG decoder library. Meanwhile, it provides the interface for

controlling the DC images decoding.

Normally, native C code executes faster than Java code [15]. In view of the efficiency

requirements of key frame extraction application, and the characteristics of Android hierarchy,

the DC image extraction engine is located between Linux kernel layer and applications layer

and realized by C/C++ programming language. In the DC image extraction engine, the

function of Linux kernel and libraries are called to decode DC image from video stream and

calculate the differences between DC images. Functions in Android application layer call the

service provided by DC image extraction engine using JNI interface. The architecture of key

frame extraction is designed into four layers as shown in Fig. 10. In Android, applications are

developed with Java programming language based on Android SDK, but key frame extraction

engine is based on C programming language. In this paper, we develop dynamic linked library

based C programming language (.so) by JNI, and then pack the “.so” file and the Java

application as a “.apk” file by Android NDK. The advantage of this approach is we can

upgrade and reuse each layer because only changing the common library allows us to develop

new applications. Combining hierarchical and modular design, the key frame extraction

engine consists of mainly four layers, including the user interface, scene change detection, key

frame allocation, and key frame distribution. This type of design approach can simplify video

information processing. It is useful to develop and maintain video processing application

using the key frame extraction engine. It is also easy to add a new functionality to our

proposed design scheme. There is a mapping table between native functions and Android Java

functions, which is registered to Dalvik VM.

 Android Framework

JNI

Key frame Extraction

Engine

Linux Kernel

Fig. 10. Structure of Android key frame extraction application

The user interface layer is the interface of key frame extraction engine, and it is a JNI

interface package of key frame extraction engine. Java applications can call the corresponding

key frame extraction engine functions through JNI interface. The layer controls the flow of

command from one layer to another. Related APIs implement the control of key frame number,

widow size setting for scene change detection, and view options for display on screen. The

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 12, December 2014 4547

main flow of the functional call is shown in Fig. 11. Every step’s function is as follows:

 • mm_decode_DC() : decode DC image from compressed video

 • mm_video_seg_from_DC() : segment video into shots using extracted DC images

 • mm_kframe_num_alloc() : allocate the number of key frames to a shot

• mm_kframe_distributor() : distribute key frames over a shot

mm_decode_DC()

mm_video_seg_from_DC()

mm_kframe_distributor()

Mm_kframe_num_alloc()

Key Frames

Fig. 11. The flow chart of key frame extraction function

We need to use a fragment structure for application UI which is provided by Android 4.2 APIs

as shown in Fig. 12 because we can easily compose different functionality for each layout in

activity. An activity in Android OS represents a single screen with a user interface. In a

multiple activities application, generally, an activity is defined as the "main" activity, which is

presented to the user when user first executes the application program. A main activity of key

frame list view is an object of activity type and it provides interface to users and communicates

with the common library. View pager contains content providers provided by system to get

key frame information from the common library. These components need to cooperate with

each other in order to extract and show key frames on Android platform.

Main Activity

Key Frame View

Fragment

List View

Fragment

Folder View

Fragment

View Pager

Common Library

Video

Segmentation

Key Frame

Allocaction

Key Frame

Distribution

 Android Framework

Extract

DC Image

Fig. 12. Fragment structure for key frame extraction application UI

4548 Kang-Wook Kim: A New Framework for Automatic Extraction of Key Frames Using DC Image Activity

To extract key frames, the video common library should collect key frames then display them

after decoding DC image, scene change detection, key frame allocation and distribution.

According to the four steps, this paper designs the key frame extraction application based on

this hierarchy. In the Java layer of key frame extraction application, the relationship of

function classes and context view structure is shown in Fig. 13.

com.dcs.android.app.keyframe

Key Frame DB Widget

Service

DC Image Mgr

Video DecoderKey Frame

Viewer

Fig. 13. Relationship of the classes and context view structure

Since there are various formats of video files, our system need to parse most of universal video

formats. The formats we support are as list in Table 6. So, we modify the original media player

in Android to support various kinds of video files listed in table 1 and then use Android API

to run media scanner service, which reads metadata from the file and adds the file to the media

content provider.

Table 6. Supported video file formats

Supported video files

video/mp4 video/3gp video/3gpp video/3gpp2

video/x-ms-asf video/x-ms-wmv video/x-ms-wma video/divx

video/avi video/flv video/mkv

After we implemented the application, compatibility testing was conducted on the application

to evaluate the application's compatibility with the contents, device environment and Android

OS version. Therefore, we tested various kinds of video sources, which have different video

formats, audio formats and resolution. There are hundreds of devices with Android system. It

is not easy to test application compatibility for all of the devices. So we choose several phones

of major Android mobile phone manufacturers such as Samsung, HTC, and Google, which

have different systems and hardware. We verified our application for various video formats

and resolution to see if there are performance or compatibility issues using several Android

phones. Test results showed that our proposed application is fully compatible for android 3.0,

android 4.0 and android 4.3 and later version.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 12, December 2014 4549

We installed the application on each of these phones. User interface is shown in Fig. 14. It

shows a screen shot of the user interface of the application and its menu tabs. It has a simple

and clear user interface with three tap buttons in the view layout. When we touch the key frame,

video is played from the position of corresponding key frame. Due to the use of the standard

Android development kits, the application can be easily built on all of these mobile phones

without modifications to the engine source code. So far, section 5 has illustrated all the design,

implementation, and testing. The main advantage of our proposed algorithm is that we can

support various video file formats and time-exhaustive computations are not needed in

distributing the key frames over the shot. In a smartphone environment, the speed performance

of key frame extraction is an indication of the feasibility of the application. Application test

results on target devices confirm the validity, availability and usefulness of the proposed

method.

 (a) (b)

Fig. 14. Screen shot of key frame display on Android phone (a) Portrait mode (b) Landscape mode

6. Conclusion

This paper proposes a new key frame extraction method for content-based video indexing and

retrieval. The proposed method consists of three steps: video segmentation, key frame

allocation, key frame distribution. The main advantage of the proposed method is that no

time-exhaustive computations are needed for distributing the key frames over the shot, plus

the procedure of key frame extraction is fully automatic. In addition, the set of key frames is

independent of any subjective thresholds or manually given parameters. The proposed

algorithm can operate directly on a wide range of video file formats. We implement our

proposed framework on Android smartphone using JNI interface to confirm the feasibility and

availability. Experimental results confirmed the validity and usefulness of the proposed

method. Furthermore, the proposed key frame extraction framework can provide a sufficient

platform for many multimedia applications, including the efficient management of large video

database, access to video archives, and the automatic creation of video clip previews.

4550 Kang-Wook Kim: A New Framework for Automatic Extraction of Key Frames Using DC Image Activity

References

[1] Zeeshan Rasheed and Mubarak Shah, “Detection and representation of scenes in videos,” IEEE

Trans. on Multimedia, vol. 7, no. 6, pp. 1097-1105, December, 2005. Article (CrossRef Link)

[2] Lijie Liu, “Combined key-frame extraction and object-based video segmentation,” IEEE Trans. on

Circuit and Systems for Video Technology, vol. 15, no. 7, July, 2005. Article (CrossRef Link)

[3] Jian-quan Ouyang, “Interactive key frame selection model,” Journal of Visual Commun. and

Image Representation, vol. 17, Issue 6, pp. 1145-1163, December, 2006. Article (CrossRef Link)

[4] Lang Congyan, “Automatic key-frames extraction to represent a video,” in Proc. of IEEE ICSP'04,

vol. 1, pp. 741-744, December, 2004. Article (CrossRef Link)

[5] Guozhu Liu and Junming Zhao, “Key frame extraction from MPEG video stream,” in Proc. of

IEEE ISIP, pp. 423-427, 2010. Article (CrossRef Link)

[6] Kin-Wai Sze, “A new key frame representation for video segment retrieval,” IEEE Trans. on

Circuit and Systems for Video Technology, vol. 15, Issue 9, pp. 1148-1155, 2005.

Article (CrossRef Link)

[7] Sang-Hyun Kim and Rae-Hong Park, “A novel approach to video sequence matching using color

and edge features with the modified hausdorff distance,” in Proc. of ISCAS, pp. II-57-II-60, 2004.

Article (CrossRef Link)

[8] Janko Calic and Ebroul Izquierdo, “Efficient key-frame extraction and video analysis,” in Proc. of

ITCC, pp. 28-33, 2002. Article (CrossRef Link)

[9] B. L. Yeo and Bede Liu, "Rapid scene analysis on compressed video," IEEE Trans. on Circuit and

Systems for Video Technology, vol. 5, no. 6, pp. 533-544, December, 1995.

Article (CrossRef Link)

[10] Fangxia Shi and Xiaojun Guo, “Keyframe extraction based on K-means results to adjacent DC

images similarity,” in Proc. of ICSPS, pp. V1-611-V1-613, 2010. Article (CrossRef Link)

[11] B. L. Yeo and Bede. Liu, "Fast extraction of spatially reduced image sequence from MPEG-2

compressed Video," IEEE Trans. on Circuit and Systems for Video Technology, vol. 9, no. 7, pp.

1100-1114 1999. Article (CrossRef Link)

[12] Y. Nakajima, K. Ujihara, and A. Yoneyama, "Universal scene change detection on MPEG-coded

data domain," in Proc. of IS&T/SPIE Visual Commun. and Image Processing, vol. 3024, pp.

992-1003, February, 1997. Article (CrossRef Link)

[13] Cheng-Min Lin, Jyh-Horng Lin, Chyi-Ren Dow, Chang-Ming Wen, "Benchmark Dalvik and

Native Code for Android System," in Proc. of the 2nd Int. Conf. on Innovations in Bio-inspired

Computing and Applications, pp. 320-323, December, 2011. Article (CrossRef Link)

[14] Damianos Gavalas and Daphne Economou, "Development platforms for mobile applications:

status and trends," IEEE Software, vol. 28, no. 1, pp. 77-86, Feburary, 2011.

Article (CrossRef Link)

[15] SJ Cho, KJ Kim, EH Hwang, SH Yoon and JW Jeon, “Benchmarking Java application using JNI

and native C application on Android,” in Proc. of ICC, pp. 284-288, 2012. Article (CrossRef Link)

[16] K.W. Kim, J.S. Lee, and S.G. Kwon, "Key frame assignment for compressed video based on DC

image activity," Journal of Korea Multimedia Society, vol. 14, no. 9, pp. 1109-1116, September,

2011. Article (CrossRef Link)

[17] Chinh T. Dang and H. Radha, “Heterogeneity image patch index and its application to consumer

video summarization,” IEEE Trans. on Image Processing, vol. 23, no. 6, pp. 2704-2718, 2014.

Article (CrossRef Link)

[18] Haojin Yang and Christoph Meinel, “Content based lecture video retrieval using speech and video

text information,” IEEE Trans. on Learning Technologies, vol. 7, no. 2, pp. 142-154, 2014.

Article (CrossRef Link)

http://dx.doi.org/10.1109/TMM.2005.858392
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1458829
http://www.sciencedirect.com/science/article/pii/S1047320306000125
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1452769
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5669117
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1501882
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1329207
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1000355
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=475896
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5555457
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=795061
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=920604
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6118781
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5654492
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6393447
http://dx.doi.org/10.9717/kmms.2011.14.9.1109
http://dx.doi.org/10.1109/TIP.2014.2320814
http://dx.doi.org/10.1109/TLT.2014.2307305

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 12, December 2014 4551

Kang-Wook Kim received the B.S., M.S., and Ph. D. degrees in Electronics Engineering

from Kyungpook National University, Korea in 1996, 1998 and 2002 respectively. He is

currently a principal engineer in R&D Group, Mobile Communication Division, Samsung

Electronics Co., Ltd. His research interests include visual communication, mobile embeded

system, and Android application.

