• 제목/요약/키워드: key characteristic parameters

검색결과 97건 처리시간 0.028초

협대역 무전기용 카테지안 루프 칩 설계 및 구현 (Design and Implementation of Cartesian Loop Chip for the Narrow-Band Walky-Talky)

  • 정영준;최재익;오승엽
    • 한국통신학회논문지
    • /
    • 제27권9C호
    • /
    • pp.871-878
    • /
    • 2002
  • RZ-SSB(Real Zero-Single Sideband) 변조 기술을 이용하는 협대역 무전기용 송신기에 가장 핵심적인 부품들 중의 하나인 카테지안 루프 칩을 0.35$\mu\textrm{m}$ CMOS 기술을 이용하여 설계하고 제작하였다. 직접변환 방식 및 카테지안 루프 칩을 이용하여 요구되는 부품 수를 줄임에 의하여 송신부의 저비용 및 소형화가 가능하고, 이를 통하여 송신 전력 효율 및 선형성을 향상시켰다. 또한 CMOS 기술을 통하여 저전력 구동이 가능하도록 하였다. 송신기 성능 시험 결과 개루프 시 약 37㏈m (5W) 의 송신 출력에서 카테지안 루프 칩을 구동하여 즉, 폐루프 상태에서 -23㏈c의 상호변조 왜곡 특성 개선 및 SSB 신호 특성을 -30㏈c 이하로 억압하였다. 또한, 상기 언급된 송신 특성 개선에 가장 영향을 미치는 성분들인 DC-offset 성분, 궤환 루프에서 발생하는 왜곡 성분을 보상하기 위한 루프 이득 및 위상 값들을 조정할 수 있도록 컴퓨터와의 외부 인터페이스를 구현하여 S/W적으로 이러한 값들을 제어할 수 있도록 프로그램화 하였다.

Analysis on electrical and thermal characteristics of MI-SS racetrack coil under conduction cooling and external magnetic field

  • Chae, Yoon Seok;Kim, Ji Hyung;Quach, Huu Luong;Lee, Sung Hoon;Kim, Ho Min
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권4호
    • /
    • pp.61-69
    • /
    • 2021
  • This paper presents the analysis and experiment results on the electrical and thermal characteristics of metal insulation (MI) REBCO racetrack coil, which was wound with stainless steel (SS) tape between turn-to-turn layers, under rotating magnetic field and conduction cooling system. Although the field windings of superconducting rotating machine are designed to operate on a direct current, they may be subjected to external magnetic field due to the unsynchronized armature windings during electrical or mechanical load fluctuations. The field windings show the voltage and magnetic field fluctuations and the critical current reduction when they are exposed to an external magnetic field. Moreover, the cryogenic cooling conditions are also identified as the factors that affect the electrical and thermal characteristics of the HTS coil because the characteristic resistance changes according to the cryogenic cooling conditions. Therefore, it is necessary to investigate the effect of external magnetic field on the electrical and thermal characteristics of MI-SS racetrack coil for further development reliable HTS field windings of superconducting rotating machine. First, the major components of the experiment test (i.e., HTS racetrack coil construction, armature winding of 75 kW class induction motor, and conduction cooling system) were fabricated and assembled. Then, the MI racetrack coil was performed under liquid nitrogen bath and conduction cooling conditions to estimate the key parameters (i.e., critical current, time constant, and characteristic resistance) for the test coil in the steady state operation. Further, the test coil was charged to the target value under conduction cooling of 35 K then exposed to the rotating magnetic field, which was generated by three phrase armature windings of 75 kW class induction motor, to investigate the electrical and thermal characteristics during the transient state.

Contact resistance increment of no-insulation REBCO magnet during a quench

  • Im, Chaemin;Cho, Mincheol;Bang, Jeseok;Kim, Jaemin;Hahn, Seungyong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권1호
    • /
    • pp.31-35
    • /
    • 2019
  • The lumped-parameter circuit model for a no- insulation (NI) high temperature superconductor (HTS) magnet has been well understood after many experimental and analytic studies over a decade. It successfully explains the non-linear charging behaviors of NI magnets. Yet, recently, multiple groups reported that the post-quench electromechanical behaviors of an NI HTS magnet may not be well explained by the lumped circuit model. The characteristic resistance of an NI magnet is one of the key parameters to characterize the so-called "NI behaviors" of an NI magnet and recently a few groups reported a potential that the characteristic resistance of an NI magnet may substantially vary during a quench. This paper deals with this issue, the increment of contact resistance of the no-insulation (NI) REBCO magnet during a quench and its impact on the post-quench behaviors. A 7 T 78 mm NI REBCO magnet that was previously built by the MIT Francis Bitter Magnet Laboratory was chosen for our simulation to investigate the increment of contact resistance to better duplicate the post-quench coil voltages in the simulation. The simulation results showed that using the contact resistance value measured in the liquid nitrogen test, the magnitude of the current through the coil must be much greater than the critical current. This indicates that the value of the contact resistance should increase sharply after the quench occurs, depending on the lumped circuit model.

열상장비의 포화 현상에 대한 시스템 모델링 (System-Level Saturation Modeling of Thermal Imager)

  • 한승오;박승만
    • 한국군사과학기술학회지
    • /
    • 제19권6호
    • /
    • pp.698-702
    • /
    • 2016
  • Thermal imager is now regarded as one of the key observation devices for ISR activities and getting important more and more. As other detectors, however, the thermal detectors also have maximum input and therefore they will be saturated if the input IR energy exceeds the allowed range. The saturation in the thermal detector makes it impossible to distinguish the target from background, as a result, the thermal imager does not perform its own mission anymore. In order to get an insight related with the image saturation, this paper develops a saturation model for a thermal imaging system, not a thermal detector. The proposed modeling starts from analyzing the specification of a thermal imager. Coupled with the characteristic parameters of the object, the saturation model can be used to predict the distance on which the detector is saturated. The proposed saturation model prove its validity by applying it for the case of observing a flash-bang.

6시그마 기법을 적용한 원자력 터빈 시뮬레이터의 발전기 출력 연산오차 저감 (The Reduction of Generator Output Calculation by Using 6σ Method on Steam Turbine Simulator in a Nuclear Power Plant)

  • 최인규;김종안;박두용;우주희;신만수
    • 전기학회논문지
    • /
    • 제60권5호
    • /
    • pp.1017-1022
    • /
    • 2011
  • This paper describes the improvement of the calculation by using $6{\sigma}$ method on steam turbine simulator in a nuclear power plant. The simulator is essential to not only verification and validation of control logic but also making sure of control constants in upgrading the long time used control system into the new one. And the dynamic model is a key point in that simulator. The model used during the retrofit period of the turbine controller in Kori Nuclear Power Plant makes difference in calculating generator output and control valve positions. That is because such operating data as the main steam pressure, the main steam temperature and control valve positions of Yongkwang #3 are different from those of Kori #4. Therefore, the model parameters must be tuned by using actual operating data for the high fidelity of simulator in calculating the dynamic characteristic of the model. This paper describes that the $6{\sigma}$ method is used in improvement of precision of generator output calculation in the steam turbine model of the simulator.

행동의 유사성과 공통점에 기초한 다양한 행동의 효율적 표현 (An Efficient Representation of Diverse Actions Based on Similarity of Actions and Commonality)

  • 이인균;박종희
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2004년도 추계 종합학술대회 논문집
    • /
    • pp.558-563
    • /
    • 2004
  • 수많은 객체와 다양한 환경이 존재하는 가상 세계에서 에이전트의 다양한 움직임을 효율적으로 표현하는 것은 중요하다. 본 논문에서는 이러한 동작들을 사실적 표현보다는 수많은 종류의 개체들의 다양한 동작을 효율적으로 모델링하는데 중점을 둔다. 이를 위해 taxonomy에 기초한 상속 기능을 이용하고 여기에 개별동작의 특이점을 추가함으로써 효율적 모델링을 추구한다. 이를 위한 중요한 기술로서 동작들의 공통점을 추출하는 방법과 상속의 내용을 구체화 하는 방법을 개발한다. 이렇게 개발된 방법들을 네발짐승의 walk동작에 적용해보고 구체적 표현은 다관절체 표시법을 사용한다.

  • PDF

AIN 기판의 수동 소자 특성 (The Characteristic of Passive Elements on Aluminum Nitride Substrate)

  • 김승용;육종민;남충모
    • 한국전자파학회논문지
    • /
    • 제19권2호
    • /
    • pp.257-262
    • /
    • 2008
  • 본 논문에서는 열전도도가 우수한 AIN 기판에 $CO_2$ Laser 장비 를 이용하여 Thru-hole과 scribing line을 형성하기 위해 $CO_2$ laser의 파라미터(촛점 거리, 공기량, 레이저 빔 시간, 펄스 개수)를 실험하고, 자체 정렬 마스킹 기법을 이용한 5 um 두께의 Cu 도금으로 AIN 기판에 전송 선로와 나선형 평면 인덕터를 제작하였다. AIN 기판에서의 마이크로스트립 라인의 전송 손실은 10 GHz에서 0.1 dB/mm, 6 nH 나선형 평면 인덕터는 1 GHz에서 56의 품질 계수를 얻었고, 이를 통해 열전도도가 우수한 AIN 기판의 고전력 RF 응용이 가능할 것으로 기대한다.

FE and ANN model of ECS to simulate the pipelines suffer from internal corrosion

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • 제3권3호
    • /
    • pp.297-314
    • /
    • 2016
  • As the study of internal corrosion of pipeline need a large number of experiments as well as long time, so there is a need for new computational technique to expand the spectrum of the results and to save time. The present work represents a new non-destructive evaluation (NDE) technique for detecting the internal corrosion inside pipeline by evaluating the dielectric properties of steel pipe at room temperature by using electrical capacitance sensor (ECS), then predict the effect of pipeline environment temperature (${\theta}$) on the corrosion rates by designing an efficient artificial neural network (ANN) architecture. ECS consists of number of electrodes mounted on the outer surface of pipeline, the sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of two dimensional capacitance sensors are illustrated. The variation in the dielectric signatures was employed to design electrical capacitance sensor (ECS) with high sensitivity to detect such defects. The rules of 24-electrode sensor parameters such as capacitance, capacitance change, and change rate of capacitance are discussed by ANSYS and MATLAB, which are combined to simulate sensor characteristic. A feed-forward neural network (FFNN) structure are applied, trained and tested to predict the finite element (FE) results of corrosion rates under room temperature, and then used the trained FFNN to predict corrosion rates at different temperature using MATLAB neural network toolbox. The FE results are in excellent agreement with an FFNN results, thus validating the accuracy and reliability of the proposed technique and leads to better understanding of the corrosion mechanism under different pipeline environmental temperature.

동적 물성치를 고려한 V.I. 충격인자의 영향 분석 (Parameter Study for the Analysis of Impact Characteristics considering Dynamic Material Properties)

  • 임지호;송정한;허훈;박우진;오일성;최종웅
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.945-950
    • /
    • 2001
  • Vacuum interrupters that is used in various switchgear components such as circuit breakers, distribution switches, contactors, etc. spreads the arc uniformly over the surface of the contacts. The electrode of vacuum interrupters is used sintered Cu-Cr material satisfied with good electrical and mechanical characteristics. Because the closing velocity is 1-3m/s, the deformation of the material of electrodes depends on the strain rate and the dynamic behavior of the sintered Cu-Cr material is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain-rate is obtained from the split Hopkinson pressure bar test using cylinder type specimens. Experimental results from both quasi-static and dynamic compressive tests with the split Hopkinson pressure bar apparatus are interpolated to construct the Johnson-Cook equation as the constitutive relation that should be applied to simulation of the dynamic behavior of electrodes. To evaluate impact characteristic of a vacuum interrupter, simulation is carried out with five parameters such as initial velocity, added mass of a movable electrode, wipe spring constant, initial offset of a wipe spring and virtual fixed spring constant.

  • PDF

디젤유가 혼입된 엔진오일의 트라이볼로지 특성에 관한 실험적 연구 (Experimental Study on the Tribological Characteristics of Diluted Engine Oil by Diesel Fuel)

  • 김한구;김청균
    • Tribology and Lubricants
    • /
    • 제21권4호
    • /
    • pp.159-164
    • /
    • 2005
  • An experimental study was conducted to evaluate characteristic variation of diluted engine oils in which contains diesel fuels and its tribological effects on engine components. In this study, diluted engine oils with $10\%,\;15\%,\;and\;20\%$ of initial fuel content rate have been used for measuring the viscosity reduction rate, blow-by gas increment rate, main gallery pressure reduction rate, and fuel content rate in engine oils. These parameters are strongly related to the tribological characteristics of key engine components. The kinematic viscosity of engine oils in which is contained by diesel fuels from $10\%\;to\;20\%$ in oils is decreasing to approximately $54\%$ of initial diluted fuel-oil volume ratios. The experimental results show that the distillated engine oil decrease the viscosity of engine oil and its oil film stiffness, and increase the wear rate of rubbing parts of engine components. Thus we recommend that the containing volume rate of fuels in engine oils should be restricted to $3\~4\%$ for a sophisticated Diesel engine and $5\~7\%$ for a standard one.