• Title/Summary/Keyword: k-space trajectory

Search Result 250, Processing Time 0.024 seconds

Integrated System for Autonomous Proximity Operations and Docking

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.43-56
    • /
    • 2011
  • An integrated system composed of guidance, navigation and control (GNC) system for autonomous proximity operations and the docking of two spacecraft was developed. The position maneuvers were determined through the integration of the state-dependent Riccati equation formulated from nonlinear relative motion dynamics and relative navigation using rendezvous laser vision (Lidar) and a vision sensor system. In the vision sensor system, a switch between sensors was made along the approach phase in order to provide continuously effective navigation. As an extension of the rendezvous laser vision system, an automated terminal guidance scheme based on the Clohessy-Wiltshire state transition matrix was used to formulate a "V-bar hopping approach" reference trajectory. A proximity operations strategy was then adapted from the approach strategy used with the automated transfer vehicle. The attitude maneuvers, determined from a linear quadratic Gaussian-type control including quaternion based attitude estimation using star trackers or a vision sensor system, provided precise attitude control and robustness under uncertainties in the moments of inertia and external disturbances. These functions were then integrated into an autonomous GNC system that can perform proximity operations and meet all conditions for successful docking. A six-degree of freedom simulation was used to demonstrate the effectiveness of the integrated system.

Design and Manufacture of Phase Shifter for 400 W Pulse Signal in X-Band (X-대역 400 W 펄스신호를 위한 위상변환기 설계 및 제작)

  • Park, In-Yong;Min, Seung-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.251-256
    • /
    • 2018
  • In the case of a radar repeater that used for the trajectory tracking of a high-speed aircraft, it emits pulses of short width. For phase displacement of these signals a branch type phase shifter is used. The phase on the transmission line is changed by utilizing the variable reactance at the end of the displacement branch transmission line. Further, it is easy to control the high output signal, and there is an advantage that the insertion loss is not large even when the reactance fails. In this paper, we will discuss the fabrication test results of a 400 W class phase shifter that sequentially displaces the phase at $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$.

Modeling, Dynamics and Control of Spacecraft Relative Motion in a Perturbed Keplerian Orbit

  • Okasha, Mohamed;Newman, Brett
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.77-88
    • /
    • 2015
  • The dynamics of relative motion in a perturbed orbital environment are exploited based on Gauss' and Cowell's variational equations. The inertial coordinate frame and relative coordinate frame (Hill frame) are used, and a linear high fidelity model is developed to describe the relative motion. This model takes into account the primary gravitational and atmospheric drag perturbations. Then, this model is used in the design of a navigation, guidance, and control system of a chaser vehicle to approach towards and to depart from a target vehicle in proximity operations. Relative navigation uses an extended Kalman filter based on this relative model to estimate the relative position/velocity of the chaser vehicle with respect to the target vehicle. This filter uses the range and angle measurements of the target relative to the chaser from a simulated LIDAR system. The corresponding measurement models, process noise matrix, and other filter parameters are provided. Numerical simulations are performed to assess the precision of this model with respect to the full nonlinear model. The analyses include the navigation errors and trajectory dispersions.

Successive Backward Sweep Method for Orbit Transfer Augmented with Homotopy Algorithm (호모토피 알고리즘을 이용한 Successive Backward Sweep 최적제어 알고리즘 설계 및 궤도전이 문제에의 적용)

  • Cho, Donghyurn;Kim, Seung Pil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.620-628
    • /
    • 2016
  • The homotopy algorithm provides a robust method for determining optimal control, in some cases the global minimum solution, as a continuation parameter is varied gradually to regulate the contributions of the nonlinear terms. In this paper, the Successive Backward Sweep (SBS) method, which is insensitive to initial guess, augmented with a homotopy algorithm is suggested. This approach is effective for highly nonlinear problems such as low-thrust trajectory optimization. Often, these highly nonlinear problems have multiple local minima. In this case, the SBS-homotopy method enables one to steadily seek a global minimum.

Numerical Simulation of Shock Wave Reflecting Patterns for Different Flow Conditions

  • Choi, Sung-Yoon;Oh, Se-Jong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.74-85
    • /
    • 2002
  • The numerical experiment has been conducted to investigate the unsteady shock wave reflecting phenomena. The cell-vertex finite-volume, Roe's upwind flux difference splitting method with unstructured grid is implemented to solve unsteady Euler equations. The $4^{th}$-order Runge-Kutta method is applied for time integration. A linear reconstruction of the flux vector using the least-square method is applied to obtain the $2^{nd}$-order accuracy for the spatial derivatives. For a better resolution of the shock wave and slipline, the dynamic grid adaptation technique is adopted. The new concept of grid adaptation technique, which is much simpler than that of conventional techniques, is introduced for the current study. Three error indicators (divergence and curl of velocity, and gradient of density) are used for the grid adaptation procedure. Considering the quality of the solution and the numerical efficiency, the grid adaptation procedure was updated up to $2^{nd}$ level at every 20 time steps. For the convenience of comparison with other experimental and analytical results, the case of interaction between the straight incoming shock wave and a sharp wedge is simulated for various flow conditions. The numerical results show good agreement with other experimental and analytical results, in the shock wave reflecting structure, slipline, and the trajectory of the triple points. Some critical cases show disagreement with the analytical results, but these cases also have been proven to show hysteresis phenomena.

A robot motion planning method for time-varying obstacle avoidance

  • Ko, Nak-Yong;Lee, Bum-Hee;Ko, Myoung-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.491-496
    • /
    • 1992
  • An analytic solution approach to the time-varying obstacle avoidance problem is pursued. We formulate the problem in robot joint space(JS), and introduce the view-time concept to deal with the time-varying obstacles. The view-time is a set of continuous times in which a time-varying obstacle is viewed and approximated by an equivalent stationary obstacle. The equivalent stationary obstacle is transformed into the JS obstacle. In JS, the path and trajectory avoiding the JS obstacle is planned.

  • PDF

Mobility Analysis and Flexible Motion Control of Mobile Manipulator System (이동 매니퓰레이터 시스템의 운동성 해석과 유연한 동작 제어)

  • Lim, Mee-Seub;Oh, Sang-Rok;Kim, Kwang-Bae;Yi, Byung-Ju;Lim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2735-2737
    • /
    • 2000
  • In this paper, we deal with modeling and analysis for mobile manipulator systems. In order to avoid the difficulties occurring due to slippage or unevenness of the terrain, we propose the utilization of minimum actuators. In this case, the resulting systems typically possess kinematic redundancies which can be beneficially employed for correcting the position error. A simple PD control method along with kinematic redundancy is employed to recover position errors for trajectory control in task space. Several primary and secondary criteria utilizing kinematic redundancy of the mobile manipulator system are tested through graphic animation.

  • PDF

Design of Torque Compensatory Controller for Robot Manipulator using Chaotic Neural Networks (카오틱 신경망을 이용한 로봇 매니퓰레이터용 토크보상제어기의 설계)

  • Moon, Chan;Kim, Sang-Hee;Park, Won-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.530-532
    • /
    • 1998
  • In this paper, We Designed the torque compensatory controller for robot manipulator using modified chaotic neural networks with self feedback loop. The proposed torque compensatory controller compensate torque of the PD controller. In order to estimate the proposed controller, we implemented to the Cartesian space control of three-axis PUMA robot and compared the simulation results with recurrent neural networks(RNNs) controller. Simulation results show that the learning error drastically decrease at on-line learning. The proposed CNNs controller shows much better control performance and shorter processing time compared to the recurrent neural network controller in the robot trajectory control.

  • PDF

A Study on Path Planning Algorithm of a Mobile Robot for Obstacle Avoidance using Optimal Design Method

  • Tran, Anh-Kim;Suh, Jin-Ho;Kim, Kwang-Ju;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.168-173
    • /
    • 2003
  • In this paper, we will present a deeper look on optimal design methods that are related to path-planning for a mobile robot. To control the motion of a mobile robot in a clustered environment, it's necessary to know a suitable trajectory assuming certain start and goal point. Up to now, there are many literatures that concern optimal path planning for an obstacle avoided mobile robot. Among those literatures, we have chosen 2 novel methods for our further analysis. The first approach [4] is based on HJB(Hamilton-Jacobi-Bellman) equation whose solution is the return-function that helps to generate a shortest path to the goal. The later [5] is called polynomial-path-planning approach, in this method, a shortest polynomial-shape path would become a solution if it was a collision-free path. The camera network plays the role as sensors to generate updated map which locates the static and dynamic objects in the space. Therefore, the exhibition of both path planning and dynamic obstacle avoidance by the updated map would be accomplished simultaneously. As we mentioned before, our research will include the motion control of a true mobile robot on those optimal planned paths which were generated by above algorithms. Base on the kinematic and dynamic simulation results, we can realize the affection of moving speed to the stable of motion on each generated path. Also, we can verify the time-optimal trajectory through velocity tuning. To simplify for our analysis, we assumed the obstacles are cylindrical circular objects with the same size.

  • PDF

Decoupled Neural Network Reference Compensation Technique for a PD Controlled Two Degrees-of-Freedom Inverted Pendulum

  • Seul Jung;Cho, Hyun-Taek
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.92-99
    • /
    • 2004
  • In this paper, the decoupled neural network reference compensation technique (DRCT) is applied to the control of a two degrees-of-freedom inverted pendulum mounted on an x-y table. Neural networks are used as auxiliary controllers for both the x axis and y axis of the PD controlled inverted pendulum. The DRCT method known to compensate for uncertainties at the trajectory level is used to control both the angle of a pendulum and the position of a cart simultaneously. Implementation of an on-line neural network learning algorithm has been implemented on the DSP board of the dSpace DSP system. Experimental studies have shown successful balancing of a pendulum on an x-y plane and good position control under external disturbances as well.