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1. INTRODUCTION 

 
Up to now, there are many methods on theme of path 

planning for obstacle avoidance mobile robot. One of the most 
efficient of those, say, based mainly on potential fields [1][2]. 
Representing the free space as an attractive potential, which 
pull the robot toward the goal configuration, and the occupied 
space as a repulsive potential, pushing the robot away from 
obstacles. This potentials, however, address only the obstacle 
avoidance problem with no concern for path optimality. 

One novel approach to the on-line shortest path problem, it 
was motivated by HJB theory [4][6]. The pseudoreturn 
function is solved in given environment and helps to generate 
an incrementally trajectory permitting robot motion before the 
entire path to the goal has been completely computed. Hence, 
this method is very powerful that the path is modified instantly 
in response to updated information of environment. It would 
become more practical if it's required that path should be as 
smooth as possible and it should not give any anxious motion 
to mobile robot. The polynomial curves are well-known as 
having a number of advantages in planar robot path planning 
such as smooth, easy to calculate, the curvature can be traded 
off against the curve length... In the Polynomial Path Planning 
Approach [5], a path planner that utilizes polynomial curve 
which would also be applicable and suitable for common 
indoor floor-plans. 

Our goal in this paper is to analyse the effect of velocity 
when controlling a real mobile robot to move on those planned 
paths to the optimality and stability. Both the kinematics and 
dynamics of a mobile robot would be considered in our 
controller. As a result, we can decide a best path that reflects 
stability and time-optimality without obstruct to the mobile 
robot's capability.  

We demonstrated our research by using the cylindrical 
circular obstacle throughout the calculations and simulations. 

This paper is organized as follows: some methods for 
obstacles avoided path-planning are briefly introduced in 
section 2. Motion controller on a planned path for a real 
mobile robot is introduced in section 3. The simulations' 
results are compared and analysed in section 4 and the final 
section are our conclusions and future work to be mentioned 

The construction of experimentation is under proceeding 
that will serve as a mean to realize this applicable optimal 
design method. 

 

2. OPTIMAL PATH PLANNING ALGORITHMS 
FOR AN OBSTACLE AVOIDED MOBILE 

ROBOT 

 
In this section, we present some of advanced methods that 

relate optimal path planning with obstacle avoidance. The 
circular obstacles are chosen for the formulation. 

 

2.1 Optimal Obstacle Avoidance Based on the 
Hamilton-Jacobi-Bellman Equation 

Return function introduced by Hamilton-Jacobi-Bellman 
(HJB) equation shows cost of moving to target point or the 
shortest length path from a certain point to target point. 
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Fig. 1 One circular obstacle 

 
Consider a circular obstacle, denoted OB, with radius r and 

center at c 2R∈ , we define an area S as obstacle shadow as 
follows: 
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where x∠  is the angle made by x with the x-axis, and 

( ) 2i RT ∈ , i=1, 2, are the points of contact on OB, of the two 
tangents from the goal. Return function v(x,c,r) of an arbitrary 
point x 2R∈  is equal to length of optimal path. Return 
function can be written as: 
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To solve an avoidance problem with multiple circular 

obstacles, Sunder and Siller [4] proposed the pseudo-return 
function which helps to solve the multiple obstacle by solving 
one obstacle at one time. The algorithm with pseudo-return 
function can be summarized as follows: 

Step 1: Determine the nearest obstacle for those with 
shadows containing original point (refer fig. 2 with x: original 
point, xf: goal point). If k=0, move to step 3. 

Step 2: Follow the negative gradient of the pseudo-return 

function until reaching one of tangency point 
)j(

kT , j=1, 2. Go 
to step 1. In case when the path intersect other obstacle, we 
can treat by define intermediate goal as one of the tangent 
points, then solve the sub-path using this intermediate goal to 
the most recently incremental point. 

Step 3: Follow the negative gradient of the unconstrained 
return function (x doesn't belong to obstacles shadow), ||x-xf||, 
until reaching the goal. Stop. 

 
* The pseudo-return function 

The nearest obstacle, that to be avoided at a given point, 
can be selected from the set J, defined as: { }}cx{mincx:jJ i}Sx:i{j

i
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Consider the nearest circular obstacle with radius 
2

k Rc ∈ , 
x denote current point, the pseudo-return function is defined 
as follows: 
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the k is the index of the nearest obstacle that is selected 

from the se J, k=0 if J is empty. 
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Fig. 2 Path generated by HJB pseudoreturn function. 

 
This method permits to generate the path with high speed 

that almost doesn't depend on the number of obstacles as it 
solves the obstacles one by one using pseudo-return function. 

 
2.2 Polynomial Path Planning Approach 

The goal of this method [5] is to define a collection of 
polynomials that connect the start to the goal point, then, 
generate the shortest collision-free path. 

Let E[xi, yi], YjXi ≤≤≤≤ 1,1 , i and j are integers, 
define a model of two-dimensional space. Let M[xi,yj] 
describe an occupancy map of space E, where each M[xi,yj] 

models a rectangle of area Y
1x

X
1

 units in size. In this 
occupancy map, M[xi,yj]=0 signifies a rectangle of free space  

while 0]y,M[x ji ≠ (1/XY) signifies a rectangle of (at least 
partially) occupied space. We can summarize the occupancy 
function M as follows: 
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Let S=(xs, ys) define a starting position, G=(xg,yg) define 

a goal position, 2b be the width of mobile robot. A path from 
S to G is defined as:    
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such that  
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Definition (8) describes any non-self-intersecting path that 
connects S to G. 

A reasonable path should be smooth, implying that it 
should well-modeled by a continuously differentiable curve 
F(x(t),y(t)) where F(x(0),y(0))=S and F(x(1),y(1))=G. For 
such a path, we may define a function  
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Equation (9) models a line of width 2b, centered on and 

perpendicular to F(x,y), along the length of F. A path P is 
valid (traversable by the robot) if:  
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Equation (10) tests a one-dimensional line of free-space at 

each point. Then, we can define a set of Nl second-order 
polynomial paths from S to G as follows: 
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Fig. 3 Shortest polynomial-collision-free 

 
Each polynomial is defined by three points: S, G, and a set 

of points equi-angular from S at a radius of 2
GS −

. The values 
for the number of polynomial Nl and the equi-angular step θ  
control the coverage of the set. Figure 4, 5, 6 shows an 
example set of polynomial paths for Nl=9 and θ =60 for point 
S and G at a distance of 850mm, and the shortest path in the 
set is shown. 

The optimal path is decided by choosing the shortest path 
among collision-free paths. The return function for our 
time-optimal polynomial can be described as follows: 

 ( ) ( ) ( ) ( ) )}11(,10,9,8,7:F
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In (12), the Fl has to satisfies the equation (7), (8), (9), (10), 

(11) before the path-length comparison is taken. The 
path-generating rate is affected by the choices of Nl, θ . We 
can decide these choices based on the density of obstacles or 
characteristic of obstacle arrangement...in order to optimize 
the rate. Therefore, the experience of the user would helps 
much in this case. 

 
3. TRAJECTORY TRACKING FOR A REAL 

MOBILE ROBOT 
 
3.1 A Nonholonomic Mobile Robot 

⌧

d

 
Fig. 4 Mobile robot with two actuated wheels 

 
Our mobile robot is two actuated wheeled type as it was 

illustrated in fig. 4. The modelling of this nonholonomic 
system was mentioned in many other literatures such as [10], 
[11], [12]. It's briefly described here for our convenience. The 
configuration of the mobile robot can be described by five 
generalized coordinates 

[ ]Tlr ,,,y,xq θθφ=  (14) 

where (x,y) are the coordinates of C, φ  is the heading 

angle of the mobile robot, and rθ , lθ  are the angles of the 
right and left driving wheels. Formally, the kinematics of the 
system can be written as follows 
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Certainly, equation (16) results in 
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0dcosysinx =φ−φ+φ− &&&  (20)  (20) 
which is a nonholonomic constraint stating that the vehicle 
can not move in direction transversal to the axis of symmetry 
of the vehicle. Furthermore, dynamics of the system can be 
summarized as follows 

τ=τ+ν+ν+ν )q(B)(F)q,q(V)q(M 1d11m1 &&  (21)  (21) 
where 
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where wm  denotes mass of the wheel, cm  denotes mass of 

the vehicle without the wheels, mI  is the moment of inertia 

of the wheel about a diameter, wI  is the moment of inertia of 
each driving wheel and the motor rotor about the wheel axis, 

and cI  is a moment of inertia of the vehicle without the 
driving wheels and motor rotors about vertical axis passing 
through point P. 

τ  is a set of two moments acting at the wheels, namely 
[ ]Tlr ττ , d

T
d S τ=τ represents bounded disturbances 

including unmodelled dynamics, FSF T=  represents friction 
vector into dynamics. 

 

3.2 Trajectory tracking control design  
The complete dynamics (15), (21) that consist of the 

kinematic steering system (15) plus some extra dynamics (21). 
Let u be an auxiliary input, then by applying the nonlinear 
feedback [10]. 

])(F)q,q(Vu)q(M)[q(B d11m11
1 τ+ν+ν+=τ − &  (22) 

One can convert the dynamic control problem into the 
kinematic control problem 

ν= )q(Sq 111&  (23.a)    (23.a) 
u=ν&  (23.b)   (23.b) 

From the path planning, we can construct a reference model 
for the vehicle to follow, these are  

T
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T
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rrr sinvy φ=& , rr ω=φ&  (24) 
The tracking error vector is define as follow 
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and the derivative of the error is 
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The auxiliary velocity control input that achieves tracking for 
23.a is given by 
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The derivative of cν  becomes 
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Then the nonlinear feedback acceleration control input is 
)(Iku c4c ν−ν+ν= &  (29) 

 
4. SIMULATION RESULTS 

 
Our simulation was executed with an mobile robot that is 

assumed to have the following parameters 
mm5.31b = , mm63a = , mm3.0d = , mm5.21r =  

 
4.1 Tracking to a path generated by HJB approach 

The design parameters were obtained through simulation: 

50k1 = , 2.0k 2 = , 35.0k 3 = , 5k 4 = . 
The designed straight reference velocity is assumed to be 
constant at value of 80mm/s, the angular velocity then be 
given through it's constraints (24) with coordinate data of the 
planned path, straight reference velocity with respect to time 
at sampling rate of 10msec. 
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Fig. 4 Error on x direction of local coordinates 
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Fig. 5 Error on y direction of local coordinates 
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Fig. 6 Traversal velocity acquired by torque control inputs 

 
4.2 Tracking to a path generated by Polynomial approach 
The design parameters were obtained through simulation: 

105k1 = , 09.0k2 = , 25.0k3 = , 7k4 = . 
 

0 2 4 6 8 10 12 14 16
-3

-2

-1

0

1

2

3

4

5

6

Time-s

X
-e

rro
r(m

m
)

X coordinate error

 
 

Fig. 7 Error on x direction of local coordinates 
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Fig. 8 Error on y direction of local coordinates 
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Fig. 9 Traversal velocity acquired by torque control inputs 

 

5. CONCLUSION 
 
Simulation results show us that the HJB based approach is 

still the optimal in both path length and traversal time 
although the tracking performance deteriorates along vehicle’s 
passage about the obstacles. However, the error fluctuations 
are not as that bad and can be considered as acceptable error in 
practical meaning. 

The simulation results of Polynomial approach appears that 
it failed to track the trajectory in the traversal direction (Fig. 7), 
otherwise it sucessfully follows the path since the lateral error 
simultaneously converges to 0 (Fig. 8) in a very short time.   

One more problem in the later path planning method is that 
the trend of abnomal raising of the velocity (Fig. 9) control 
input. In this meaning, it’s possible to have chance of 
insufficient torque inputs supplied by the actuators or 
defficiency in term of energy usage. The drawbacks lay much 
on the control law while the mobile robot has to deal with the 
curved trajectories 

Therefore, the polynomial path planning approach can be 
considered as an alternative optimal method and it’s necessary 
to improve it’s performance through further researchs. 
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