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Decoupled Neural Network Reference Compensation Technique
for a PD Controlled Two Degrees-of-Freedom Inverted Pendulum

Seul Jung and Hyun Taek Cho

Abstract: In this paper, the decoupled neural network reference compensation technique
(DRCT) is applied to the control of a two degrees-of-freedom inverted pendulum mounted on an
x-y table. Neural networks are used as auxiliary controllers for both the x axis and y axis of the
PD controlled inverted pendulum. The DRCT method known to compensate for uncertainties at
the trajectory level is used to control both the angle of a pendulum and the position of a cart si-
multaneously. Implementation of an on-line neural network learning algorithm has been imple-
mented on the DSP board of the dSpace DSP system. Experimental studies have shown success-
ful balancing of a pendulum on an x-y plane and good position control under external distur-

bances as well.
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1. INTRODUCTION

Inverted pendulum application using various con-
trol methods has been a typical example for advanced
control education, as well as interesting research.
Control of an inverted pendulum has been considered
as a fascinating, but difficult problem to solve since
the system has very challenging characteristics such
as nonlinearity and a single-input multi-output struc-
ture [1, 2]. Many successful results using the ad-
vanced control theories for balancing the inverted
pendulum using a cart have been reported throughout
various literatures [1, 3]. Those successful results
have been mainly focused on balancing the pendulum,
rather than on controlling the position of the cart.
Recently, successful control of both the angle and the
position of the inverted pendulum has been demon-
strated by practical experiments [4-6].

The nature of controlling both the angle of the
pendulum and the position of the cart with a single
input force has remained as an open nonlinear prob-
lem to be overcome. The difficulty of controlling
both the angle and the position of the inverted pendu-
lum system comes from different dynamic movement
patterns of the pendulum and the cart. For example,
let us consider the case that a controller for the cart
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tries to move toward one direction to minimize a po-
sitional error while a controller for the pendulum tries
to move in the opposite direction to minimize the
angle error. When this contradiction occurs, it is dif-
ficult to decide the suitable control law. This is one
reason that the conventional fixed PD controller can-
not control both the angle of the pendulum and the
position of the cart concurrently. To tackle this prob-
lem, suitable controllers’ gains for various cases
should be considered.

Fuzzy algorithm is a good candidate for solving
this type of problem, but the assessment of fuzzy
rules for fuzzification does not simply satisfy both
objectives [7-9]. Several trial and error experiments
are required to obtain a certain satisfaction. Visual
feedback control for the inverted pendulum has also
been proposed [9, 10]. Rather than solely depending
upon encoder signals, controlling the balance of the
pendulum relies on visual feedback. The performance
of visual feedback control is dependent upon the ac-
curacy of the vision system.

Neural network based control is another good can-
didate for this application. In our previous researches,
control of both the angle and the position of the in-
verted pendulum system has been successfully per-
formed on a large x-y table robot [4, 6]. However,
due to the large size of our previous system, position
control and balancing of the inverted pendulum of
both axes on the x-y plane failed. One of the reasons
for the failure was that the actuated motor could not
generate enough torque for rapid movement of the
axis due to the heavy weight of one side of the two
axes.

In this paper, as an extension of our previous re-
search [4, 6], control of the inverted pendulum on the
x-y table is revisited. Like the balancing of a stick on
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a palm, a pendulum can freely move on the x-y plane.
An x-y table is newly built and its size is relatively
reduced to generate faster movements. Neural net-
works are also used as auxiliary controllers to help
the PD controller for the system to minimize the er-
rors of angles and positions of each axis. Differing
from the previous research, a decoupled neural net-
work structure is used. Decoupled neural networks
structure means that two separate neural networks are
used for controlling each axis of the x-y table instead
of using a single neural network. Since the structure
of the x-y table is a more likely decoupled system,
the use of two separate neural networks is suitable for
eliminating any coupling effects.

For experiments, the newly designed smaller x-y
table with the dSpace DSP system is implemented.
Interface between the robot and the DSP system has
been implemented to drive the motors of each axis.
On-line neural computation algorithm is developed
and implemented on the DSP board of the dSpace
system to achieve real time control. Successful re-
sults of maintaining balance of the pendulum and
position control of the cart on the x-y plane have
been obtained by the proposed control algorithm.

2. SYSTEM STRUCTURE

2.1. Overall system structure

The overall system structure is shown in Fig. 1.
The system consists of three parts: a controller, a
pendulum on an x-y table, and actuators. The control
component includes a computer with the dSpace DSP
board and interface. The DSP board is used to calcu-
late the neural network learning algorithm in an on-
line fashion. The main body includes an inverted
pendulum and an x-y table. The size of the x-y table
is 0.8m x0.9m. As shown in Fig. 1, a 2-DOF in-
verted pendulum is mounted on the x-axis of the ro-
bot. The x-axis moves along the y-axis with an LM
Guide. Two axes are actuated by two DC motors
through timing belts. Belt tension is often considered
as an uncertainty.

The neural network control algorithm is imple-
mented on the DSP board and the board generates
PWM signals to the motor drivers.

2.2, Inverted pendulum

The dynamics of an inverted pendulum can be
modeled in x and y directions separately. The dy-
namic equation for the x axis is

Jéx=vsin9x—thos¢9x+b9x9x, H
where J is an inertia of a pendulum, &, is the
angle of x axis, L is the length of a pendulum, ng is

friction constant, and v and #/ are vertical force
and horizontal force vectors, respectively. Vertical

Fig. 1. The overall system.
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Fig. 2. Inverted pendulum model.

and horizontal forces are given as follows:

h=m(%+ L6, cosf, — Léf sinf,) 2

v—mg=-mLisinG, — mLéf cosf,

s

where m is the mass of a pendulum and x is the
displacement in the x axis.
For a cart,

ijc'zux—h’ 3)

where M, isthe mass of a cart in the x axis.
Solving for éx and ¥ by combining (1), (2) and (3)

yields the dynamic model of an inverted pendulum
shown as follows:

(M, +m)i+mLcos6 6, —mLsin@ .62 +b,%=u, ,
4)
(J +mL*), + mLcos, % —mgLsin6, —bg 6, =0
(5)
We know from equations (4) and (5) that the



94 International Journal of Control, Automation, and Systems Vol. 2, No. 1, March 2004

Cart

%
'
Q.

Pale

Fig. 3. PD controlled pendulum system.

system has a single input u, and two outputs x

and @ for an x axis.
Combining (4) and (5) yields

p M'(mgLs6y +bp 6,) — mLcO, (mLs0,07 —b.x +uy)
* M -m*I*c%6,

(6)
. J(mLs6.67 —b%+u,)—mLcO, (mLgsO, + by 6,)
X =
MU' -m*L*c?0,

Q)
where
M=M,+mJ =J +mL2,s¢9 =sin@,c6 =cosb.
For the y axis, we have a similar dynamic equation as

G M, (mgLs6, + b(,ye'y )= mLc, (mLs6,0] —b % +u,)

by ) 2,22
MyJ—mchy

®

_ J'(mLs0,0} ~b i +u,)-mLc,(mLgs6, + by 6,)
y = P,

; 2,22
MyJ -m-Lc By

)]
Note that M 3 includes the mass of an x axis be-

cause the y axis carries the x axis at all times.

3. PD CONTROL OF INVERTED
PENDULUM

In this section, the non-model based PD control is
presented. It is known that a PD control can stabilize
the second order system. Even though we have de-
rived the dynamic equations in the previous section,
it is very difficult to obtain the exact dynamic equa-
tions including uncertain nonlinear terms. Therefore,
ignoring the system dynamics, the most uncompli-
cated method is to use the simple linear PD control-
lers as the main controllers.

Fig. 3 depicts the PD control structure of controlling

the inverted pendulum in one axis. In order to control
a two degrees-of-freedom pendulum, the combined
two separate control inputs are required.

The control input ., for an x axis is formed by add-

ing two controllers’ outputs from an angle error and a
displacement error. The errors are defined as follows:

€0=9d—¢9, €y =Xg — X, (10)

where ¢, is the angle error and e, is the positional

error.
The PD controller is now formed as

&x:ﬁ6x+&px, (11)

uox = koo, €9 +kapy €5,
(12)

upx kapx ‘ex +kdpx 'ex,

where # gy and u px are nominal control inputs for
a pendulum and for a cart of the x axis, respectively.

The control input ugy and u p, for y axis can

be represented in a similar way. The difficulty of con-
trolling the pendulum angle and the cart position si-
multaneously comes from different configurations

uo and u p .

The use of diagonal controller gains can decouple
two axes, but there still are coupled effects such as
the coriolis force and other unknown nonlinear terms.
As a result the linear controller cannot cope with sys-
tem parameter variations well enough, resulting in
the failure of position control of the cart [6]. Exten-
sive simulation studies have been done.

In order to improve the control performance, two
neural networks are used. Since the neural network is
nonlinear it is a good candidate for nonlinear system
control. A decoupled neural network structure for
controlling each axis separately helps the system to
be more decoupled. Fig. 5 indicates the decoupled
neural network structure for a single axis.

4. REFERENCE COMPENSATION
TECHNIQUE FOR NN CONTROL

In this section, one of the on-line learning algo-
rithms for neural network control is presented. The
algorithm called the reference compensation tech-
nique has been proposed and it has shown good per-
formances in the robot position control [11, 12].

This scheme is identical to the feedback error
learning method in that it performs inverse dynamic
control, but it is also different in that compensation is
done without modifying pre-fixed linear controllers.
This control scheme is depicted in Fig. 4. The basic
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Fig. 4. Reference compensation technique scheme.

concept of this scheme is that the NN controller acts
as the inverse of the system under PD control so that
the system response ¢ tracks the desired response

g, with minimal distortion. Neural networks are
placed in front of the closed loop controlled system
as pre-filters as seen in Fig. 4. Neural network out-
puts are added to reference trajectories. Added terms
are subtracted by output signals to generate error sig-
nals &. The errors are multiplied by controller gains.

Therefore, they eventually shape the reference in-
put trajectory g, in such a way that the output er-
ror& is minimized to zero.

Our proposed control block diagram is shown in
Fig. 5. The inverted pendulum system is controlled
by PD control and neural network control.

From Fig. S, the PD controller with compensating
signals from a neural network forms the following
control inputs:

gy = kpg(eq +p) + kag (e + by), (13)
Upe = ke, +8,) e, +6,) (14)

The derivatives éﬁg and ¢ » of neural network

outputs gpand ¢, are obtained by the finite differ-

ence method, respectively.
The total control input for one axis is the sum of
(13) and (14).

ux=ﬁ9x+&px+®x, (15)

The new control input is actually the addition of a
neural network compensating signal to nominal con-

trol input uy. These compensating terms compen-

sate for any dynamic uncertainties that are not mod-
eled.

Define the neural network output as

q)x:(l)ﬁx-i"q)px ’ (16)

Where (Dex = kpg ¢€x+ kd0¢0x and

NN Compensator PD Controller Pendulum System
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Fig. 5. Neural network control block diagram for a sin-
gle axis.

(Dx = kpx¢px + kdx ¢px

Also note that the compensating signal @,

solves the sign problem between ugx and ;px.

Since compensation is performed at the trajectory
level, those compensating signals are amplified
through controller gains so that the magnitudes of
those pre-filtered signals are small compared with
ones in other auxiliary type controllers [5]. In the
paper [5], the neural network is used to adjust PID
controller gains. The goal of minimizing error is the
same with the proposed RCT algorithm, but the dif-
ference comes from the controlling structure. The
RCT algorithm is known to have the advantage of
outer loop control without modifying the internal
control structure [11, 12].

5. LEARNING ALGORITHM

The neural network structure for a single axis- is
shown in Fig. 6. A two layered feed-forward structure
is used. Input patterns are the combination of position
and angle errors. For experiments, 9 hidden units are
used. Selection of the number of hidden units is
based on trial and error. Delayed states are used as
inputs of a neural network to give dynamics into the
neural network. Two neural network outputs are used,
one for compensating an angle error and the other for
a position error are used for a single axis.

Nonlinear function of hidden unit is tangent hyper-
bolic function.

1—exp(—x)

Sl = (17)

1+ exp(—x) )
From (4), (5), and (15), we have the following

closed loop error equation:

Z;GX“‘ﬁpx :f(é,é,@,)'c',fc,x)—q)x. (18)

Define the training signal V with nominal con-
trol inputs as
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Fig. 6. The structure of neural network for a single
axis.
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Fig. 7. Real inverted pendulum system.

V=;19x+&px- (19)

Then, at the convergence v = 0 | from equation
(18) an ideal neural network output becomes the in-
verse dynamics of the system.

@ = f(6,0,0,%%,x). (20)

So, ultimately, the inverse dynamic control can be
achieved. This is the difference in the control struc-
ture from those of other PID tuning methods [5].

The objective function is defined to minimize the
error vV as

1
E =—v?. (21)
2
In order to use the steepest decent algorithm, the
gradient should be obtained. Differentiating (21)

yields the gradient as

OE_OES _ o
ow ovow ow

(22)
ob
:_vﬁﬂ:_v(%_{_ px),
ow ow ow
o 0
where q)€x=k 98¢9x and P =k, ¢px.
PZ ow ow P ow

By using the gfadient function in (22) the back-
propagation algorithm can be used. The weight
change is formed as

OF
Aty =n—v+alw(t —1). 23
w(r) U (t-1) (23)
Weights are updated as
w(t +1) = w(t) + Aw(t) , 24)

where 7 is a learning rate and « is a momentum

coefficient.

Neural network weights are updated at every sam-
pling time. Since rapid sampling time can be
achieved with the help of DSP hardware technology,
real time control of a neural network becomes possi-
ble. Even on-line learning and control of the system
can be performed. This means that no a priori leam-
ing before control action is required.

In the next section, experimental studies of neural
network control are presented.

6. EXPERIMENTAL SETUPS

The overall system structure is shown in Fig. 7.
The whole system consists of three parts: an x-y table
robot, the dSpace DSP system, and a PC. The DSP
board is used to implement the neural network algo-
rithm in real time, which requires a huge calculation
time. Numerical values of neural network outputs
calculated by the DSP board are converted to PWM
signals for motor drivers.

The DC motors driven by its own drivers com-
manded from the DSP board mounted actually actu-
ate each axis of the x-y table. Encoders mounted on
each axis sense rotations and those sensed data are
sent to the encoder board. An encoder board collects

-data and converts them into digital values that can be

used as a feedback in the control loop. Table 1 shows
the specifications of actuators.

Table 1. Specification of actuators.

Devices Specifications
DC motor 24V/70W
Encoder 2000 counts/turn
Gear ratio 5:1
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Fig. 8. Movement of pendulum on x-y plane.
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Fig. 9. X axis angle error.

The weight of the pendulum is 0.35kg without a
weight and 0.5Kg with a weight at the top.

There are two encoders mounted on the cart to
measure the rotational angles of both axes. The in-
verted pendulum can fall in any direction while a cart
can move on the x-y plane. The movement of the cart
is measured by encoders attached to the motor joint.
The x-y table is actuated by DC motors through tim-
ing belts. Since the x axis cart moves on the top of y
axis, there are coupling effects, and this leads to the
reason that control of the y axis is more difficult.

08, k,, = 6,
kg = 0.6, k,, = -0.5 for x axis and deI,: 1.4,

For the controller gains, k, =

kﬂ‘?\ = 8.5, kdpy: -0.95, k,,, = -0.8 for y axis are

used. The PD gains are optimized by trial errors basis.
However, gain values are small enough to maintain
stability so that neural networks are allowed to per-
form the most of control. We found from experiments
that if the PD gains are set too large, performance is
even worse. As such, it is better to leave the

y axis pendulum angle emor
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Fig. 10. Y axis angle error.

control to neural networks after stabilizing the system
by PD controllers.

For the neural network structure, 9 hidden units for
each neural network are used. Leaming rate p =

0.0011, »,= 0.001 and momentum ¢« = 0.15, o, =

0.05 are optimized. These constant values are opti-
mized by trial and error basis. We found that the
learning rate is the most sensitive variable to per-
formance. Selecting a larger learning rate gives faster
convergence of errors as well as occasional instabili-
ties. The overall sampling time is 1 KHz.

7. EXPERIMENTAL RESULTS

Initially the pendulum is located at (0, 0) on the x-
y plane. The pendulum is well maintained at the ini-
tial position until there is an external hit. Then the
movement of the pendulum is affected by an external
disturbance by the hand. The pendulum is required to
move back to the initial position.

Fig. 8 shows the movement of the pendulum on the
x-y plane after following hits.

We can see that there have been two disturbances
by hitting the pendulum in diagonal directions. The
pendulum has kept returning to the initial position
while maintaining the balance of the angle of the
pendulum shown in Fig. 9. Traveling distances are
from - 10.5 cm to 6 cm in the x axis and from -1.5 ecm
to 4 cm in the y axis. The pendulum angle errors for
both axes are shown in Figs. 9 and 10 for each direc-
tion. Large overshoots by disturbances are observed
at approximately both 13 seconds and 29 seconds and
they settled down quickly.

The positional errors are shown in Figs. 11 and 12.
Comparing performances of two axes' movements,
the x axis position error is less than 2 mm at steady
state, but that of the y axis is about 2 cm. The y axis
keeps oscillating with a small bound.
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Fig. 11. X axis position error.
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Fig. 12.Y axis position error.

The error eventually converges to zero, but it takes
time. One reason for this is that the y axis control is
more difficult than the x axis control; because the y
axis continually carries the x axis and coupling ef-
fects are well aware of this factor, requiring addi-
tional torques to generate faster movements.

A further matter is one side actuation through tim-
ing belts. This causes minimal jerk by unbalanced
movements to each axis even though an LM guide is
used. However, position tracking of the cart as well
as upright position of the pendulum is satisfactory.

8. CONCLUSIONS

The reference compensation technique of the neu-
ral network for balancing a two degrees-of-freedom
PD controlled inverted pendulum has been presented.
The DRCT was very effective in balancing the
nonlinear inverted pendulum on the x-y plane by de-
coupling the x and y axis. The neural compensator
helps conventional PD controllers to control the angle
of the pendulum and the position of the cart simulta-
neously.

Even though balancing of the pendulum was quite
successful, controlling the cart position shows small
oscillatory errors in the y axis. One of the reasons
might be the location of optical encoders. Shown in
Fig. 7, encoders are mounted at the axis of rotating
rod, not directly at the motor axis.

Another possibility is the velocity estimation. Sim-
ple velocity estimation using the finite difference
might not provide good estimation for slow move-
ment of the pendulum. Finally, the y axis is actuated
by one side and not the other, which leads to the mis-
alignment that causes oscillation. This yields further
nonlinear characteristics such as backlash. These are
left as future works to be performed.
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