• Title/Summary/Keyword: k-fractional derivative

Search Result 98, Processing Time 0.022 seconds

AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

  • Odibat, Zaid M.;Momani, Shaher
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.15-27
    • /
    • 2008
  • We present and discuss an algorithm for the numerical solution of initial value problems of the form $D_*^\alpha$y(t) = f(t, y(t)), y(0) = y0, where $D_*^\alpha$y is the derivative of y of order $\alpha$ in the sense of Caputo and 0<${\alpha}{\leq}1$. The algorithm is based on the fractional Euler's method which can be seen as a generalization of the classical Euler's method. Numerical examples are given and the results show that the present algorithm is very effective and convenient.

  • PDF

A NONRANDOM VARIATIONAL APPROACH TO STOCHASTIC LINEAR QUADRATIC GAUSSIAN OPTIMIZATION INVOLVING FRACTIONAL NOISES (FLQG)

  • JUMARIE GUY
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.19-32
    • /
    • 2005
  • It is shown that the problem of minimizing (maximizing) a quadratic cost functional (quadratic gain functional) given the dynamics dx = (fx + gu)dt + hdb(t, a) where b(t, a) is a fractional Brownian motion of order a, 0 < 2a < 1, can be solved completely (and meaningfully!) by using the dynamical equations of the moments of x(t). The key is to use fractional Taylor's series to obtain a relation between differential and differential of fractional order.

SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

  • Yang, Yin;Chen, Yanping;Huang, Yunqing
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.203-224
    • /
    • 2014
  • We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Fredholm-Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in $L^{\infty}$ norm and weighted $L^2$-norm. The numerical examples are given to illustrate the theoretical results.

Modeling of fractional magneto-thermoelasticity for a perfect conducting materials

  • Ezzat, M.A.;El-Bary, A.A.
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.707-731
    • /
    • 2016
  • A unified mathematical model of the equations of generalized magneto-thermoelasticty based on fractional derivative heat transfer for isotropic perfect conducting media is given. Some essential theorems on the linear coupled and generalized theories of thermoelasticity e.g., the Lord- Shulman (LS) theory, Green-Lindsay (GL) theory and the coupled theory (CTE) as well as dual-phase-lag (DPL) heat conduction law are established. Laplace transform techniques are used. The method of the matrix exponential which constitutes the basis of the state-space approach of modern theory is applied to the non-dimensional equations. The resulting formulation is applied to a variety of one-dimensional problems. The solutions to a thermal shock problem and to a problem of a layer media are obtained in the present of a transverse uniform magnetic field. According to the numerical results and its graphs, conclusion about the new model has been constructed. The effects of the fractional derivative parameter on thermoelastic fields for different theories are discussed.

SOME FAMILIES OF INFINITE SUMS DERIVED BY MEANS OF FRACTIONAL CALCULUS

  • Romero, Susana Salinas De;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • v.17 no.1
    • /
    • pp.135-146
    • /
    • 2001
  • Several families of infinite series were summed recently by means of certain operators of fractional calculus(that is, calculus of derivatives and integrals of any real or complex order). In the present sequel to this recent work, it is shown that much more general classes of infinite sums can be evaluated without using fractional calculus. Some other related results are also considered.

  • PDF

BOUNDARY VALUE PROBLEMS FOR FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS INVOLVING GRONWALL INEQUALITY IN BANACH SPACE

  • KARTHIKEYAN, K.;CHANDRAN, C.;TRUJILLO, J.J.
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.3_4
    • /
    • pp.193-206
    • /
    • 2016
  • In this paper, we study boundary value problems for fractional integrodifferential equations involving Caputo derivative in Banach spaces. A generalized singular type Gronwall inequality is given to obtain an important priori bounds. Some sufficient conditions for the existence solutions are established by virtue of fractional calculus and fixed point method under some mild conditions.

ANALYSIS OF SOLUTIONS OF TIME FRACTIONAL TELEGRAPH EQUATION

  • Joice Nirmala, R.;Balachandran, K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.209-224
    • /
    • 2014
  • In this paper, the solution of time fractional telegraph equation is obtained by using Adomain decomposition method and compared with various other method to determine the efficiency of Adomain decomposition method. These methods are used to obtain the series solutions. Finally, results are analysed by plotting the solutions for various fractional orders.

STABILITY OF FRACTIONAL-ORDER NONLINEAR SYSTEMS DEPENDING ON A PARAMETER

  • Ben Makhlouf, Abdellatif;Hammami, Mohamed Ali;Sioud, Khaled
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1309-1321
    • /
    • 2017
  • In this paper, we present a practical Mittag Leffler stability for fractional-order nonlinear systems depending on a parameter. A sufficient condition on practical Mittag Leffler stability is given by using a Lyapunov function. In addition, we study the problem of stability and stabilization for some classes of fractional-order systems.

Analysis of an electrically actuated fractional model of viscoelastic microbeams

  • Bahraini, Seyed Masoud Sotoodeh;Eghtesad, Mohammad;Farid, Mehrdad;Ghavanloo, Esmaeal
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.937-956
    • /
    • 2014
  • The MEMS structures usually are made from silicon; consideration of the viscoelastic effect in microbeams duo to the phenomena of silicon creep is necessary. Application of the fractional model of microbeams made from viscoelastic materials is studied in this paper. Quasi-static and dynamical responses of an electrically actuated viscoelastic microbeam are investigated. For this purpose, a nonlinear finite element formulation of viscoelastic beams in combination with the fractional derivative constitutive equations is elucidated. The four-parameter fractional derivative model is used to describe the constitutive equations. The electric force acting on the microbeam is introduced and numerical methods for solving the nonlinear algebraic equation of quasi-static response and nonlinear equation of motion of dynamical response are described. The deflected configurations of a microbeam for different purely DC voltages and the tip displacement of the microbeam under a combined DC and AC voltages are presented. The validity of the present analysis is confirmed by comparing the results with those of the corresponding cases available in the literature.

EXISTENCE AND STABILITY RESULTS OF GENERALIZED FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS

  • Kausika, C.;Balachandran, K.;Annapoorani, N.;Kim, J.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.793-809
    • /
    • 2021
  • This paper gives sufficient conditions to ensure the existence and stability of solutions for generalized nonlinear fractional integrodifferential equations of order α (1 < α < 2). The main theorem asserts the stability results in a weighted Banach space, employing the Krasnoselskii's fixed point technique and the existence of at least one mild solution satisfying the asymptotic stability condition. Two examples are provided to illustrate the theory.