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ABSTRACT. In this paper, the solution of time fractional telegraph equation is obtained by
using Adomain decomposition method and compared with various other method to determine
the efficiency of Adomain decomposition method. These methods are used to obtain the series
solutions. Finally, results are analysed by plotting the solutions for various fractional orders.

1. INTRODUCTION

The main motivation to study time fractional telegraph equation is that, it would be diffi-
cult to imagine a world without communication systems. Normally transmission media can be
categorized into two groups, namely guided and unguided transmission lines. In order to opti-
mize guided communication systems, it is necessary to determine or project power and signal
losses in the system, since all the system has such losses. To determine these losses and even-
tually ensure a maximum output, it is necessary to formulate some kind of equation with which
to calculate these losses. This motivates us to study the analysis of time fractional telegraph
equation.

Here, the Adomain decomposition method (ADM) is used to construct the approximate
solution of time fractional telegraph equation. The result of this study reveal that the Adomain
decomposition method is very powerful, effective, and quiet accurate. It was introduced by
Adomian in 1980, which provides an effective procedure for explicit and numerical solutions
of a wide class of differential systems representing real physical problems. This method is
efficiently utilized for initial or boundary value problems, for linear or nonlinear, ordinary or
partial differential equations and even for stochastic systems as well. Moreover no linearisation
or perturbation is required in this method. During the last two decades, extensive work has been
done using ADM as it provides analytical approximate solutions for nonlinear equations and
considerable interest in solving fractional differential equations has been stimulated.

There are many methods, namely Laplace and Fourier transforms, have been utilized to solve
linear fractional differential equations (FDE)[23, 24, 28]. In contrast for solving the nonlinear
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FDE, one has to depend upon numerical solutions [3, 12, 33]. Recently developed technique of
Adomian decomposition [2] has proven to be a powerful method and has successfully been ap-
plied in a variety of problems. Biazar et al. [7] have employed the Adomian decomposition to
solve a system of ordinary differential equations and system of Volterra integral equations [6] as
well. Wazwaz [31] has explored this method to obtain solutions of wave equation. The classical
telegraph equation and space or time fractional telegraph equations have been solved by a num-
ber of researchers namely Biazar et al. [6, 8, 7], Cascaval et al. [9], Kaya [19], Momani [22],
Odibat and Momani [33], Orsingher and Zhao [25], Orsingher and Beghin [24], Sevimlican
[30] and Yildirim [32] using various techniques such as variational iteration method, transform
method, Adomian decomposition method, generalized differential transform method, and ho-
motopy perturbation method. Adomian decomposition offers certain advantages over routine
numerical methods. Numerical methods use discretization which gives rise to rounding off er-
rors causing loss of accuracy and requires large computer power and time. By using Adomain
decomposition method Parthiban and Balachandran [27] analysed the solutions of system of
fractional partial differential equations. Daftardar-Gejji and Babakhani [13] have studied the
solution of system of FDE and proved the existence and uniqueness theorems for the initial
value problem. Following this Daftardar-Gejji and Jafari [10, 11] have taken up the problem of
finding explicit solutions for system of FDE and have developed a decomposition method for
the linear FDE of the form

Dαiyi(x) =

n∑
j=1

(ϕij(x) + νijD
αij )yj + gi(x),

with

y
(k)
i (0) = cik, 0 ≤ k ≤ [αi], 1 ≤ i, j ≤ n, αi, αij ∈ R+.

It is useful for obtaining closed form or numerical approximation for wide class of stochastic
and deterministic problems in science and engineering. This method has been modified by
Wazwaz [31].

A mathematical derivation for the time fractional telegraph equation is obtained from classi-
cal telegraph equation by replacing the second order time derivative by fractional derivative of
order 1 < 2α ≤ 2 and by replacing first order time derivative by fractional derivative of order
1
2 < α ≤ 1. The modeling of time fractional telegraph equation [8] is as follows.

∂2αe(x, t)

∂t2α
+ (RC +GL)

∂αe(x, t)

∂tα
+GRe(x, t) =

∂2e(x, t)

∂x2
,

where 0 < x < L, t > 0,
1

2
< α ≤ 1.

and
∂2αi(x, t)

∂t2α
+ (RC +GL)

∂αi(x, t)

∂tα
+GRi(x, t) =

∂2i(x, t)

∂x2
,

where 0 < x < L, t > 0,
1

2
< α ≤ 1.
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where x is the distance from sending end of the cable, e(x, t) is the potential at any point
on the cable at any time, i(x, t) is the current at any point on the cable at any time, R is the
resistance of the cable, L is the inductance of the cable,G is the conductance to ground,C is the
capacitance to ground. In this paper the Adomain decomposition method is used to investigate
the time fractional telegraph equation and the analytical solution of the telegraph equation is
calculated and compared with other methods. In this the solution is obtained in the form of a
series with easily computable components.

2. PRELIMINARIES

In this section, we provide some basic definitions of fractional integral and differential op-
erators.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0 of a function
f ∈ L1(R+) is defined as

Iαf(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds, (2.1)

where Γ(·) is the Euler gamma function.

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0, n − 1 < α < n,
n ∈ N, is defined as

Dαf(t) = DnIn−αf(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

0
(t− s)n−α−1f(s)ds, (2.2)

where the function f(t) has absolutely continuous derivatives upto order n− 1.

Definition 2.3. The Caputo fractional derivative of order α > 0, n− 1 < α < n, is defined as

CDα
0 f(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s)ds (2.3)

where the function f(t) has absolutely continuous derivative upto order n− 1.

Definition 2.4. The Caputo fractional derivative of two variables of order α > 0, n − 1 <
α < n, is defined as

CDα
0 f(x, t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1∂f

n(x, s)

∂sn
ds (2.4)

where the function f(t) has absolutely continuous derivative upto order n− 1.

Definition 2.5. The Laplace transform of Caputo derivative is defined as

Lt[D
α
t u(x, t)] = sαu(x, s)−

n−1∑
k=0

uk(x, 0)sα−1−k, n− 1 < α ≤ n.
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The power function of fractional derivative is

Iαt D
α
t f(t) = f(t)−

m−1∑
k=0

fk(0)
tk

k!
, (2.5)

Dα
t t

µ =
Γ(µ+ 1)

Γ(µ+ 1− α)
tµ−α, µ > −1, (2.6)

Iαt t
µ =

Γ(µ+ 1)

Γ(µ+ α+ 1)
tµ+α, µ > −1. (2.7)

The Mittag-Leffler function is defined as follows:

Definition 2.6 (Mittag-Leffler function). The Mittag-Leffler function Eα(z) is defined as

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, z ∈ C, Re(α) > 0. (2.8)

The Mittag-Leffler function Eα,β(z) is defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z, β ∈ C, Re(α) > 0. (2.9)

Caputo fractional derivative is considered throughout this paper because it provides us the
advantage of requiring initial conditions given in terms of integer order derivatives. The time
fractional telegraph equation can be solved by various methods. Khan [20] discussed the ho-
motophy pertubation method by Laplace transformation. Huang [16] discussed the solution
of time fractional telegraph equation in terms of Laplace and Fourier transform in the vari-
ables t and x, where we get the solution in terms of infinite series not a closed one. In double
Laplace transformation method [5, 15] we need both initial and boundary conditions to find
exact solution, but here we are given only initial conditions. So the remaining method avail-
able is Adomain decomposition method and decomposition method by Laplace transformation
method.

In the following sections Adomain decomposition and decomposition method by Laplace
transformation method is used to obtain homogeneous and nonhomogeneous analytic and ap-
proximate solution of time fractional telegraph equation.

3. ADOMAIN DECOMPOSITION METHOD

Consider the differential equation of the form

Lu+Ru+Nu = g, (3.1)

where L is the highest linear order derivative operator and invertible, R is the linear differential
operator of order less that L, Nu is the nonlinear term and g is the source term

Lu = g −Ru−Nu,
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because L is invertible, the equivalent expression is

L−1Lu = L−1g − L−1Ru− L−1Nu.

If L is a second-order operator, for example, L−1 is a two fold integration operator and
L−1Lu = u− u(0)− tu

′
(0), then yields

u = u(0) + tu
′
(0) + L−1g − L−1Ru− L−1Nu.

Now the solution u can be presented as a series u =

∞∑
n=0

un, with

u0 = u(0) + tu
′
(0) + L−1g,

and un, n > 0 is to be determined. The nonlinear term Nu will be decomposed by the infinite
series of Adomain polynomials

Nu =
∞∑
n=0

An,

where An is calculated using the formula

An =
1

n!

[
dn

dλn
N(v(y))

]
λ=0

, n = 0, 1, 2, · · · ,

where

v(y) =
∞∑
n=0

λnun.

Now the series solution u =
∞∑
n=0

un to the differential equation is calculated iteratively as

follows:

u0 = u(0) + tu
′
(0) + L−1g,

un+1 = −L−1(Run)− L−1(An), n ≥ 0.

The results reveal that the Adomain decomposition method is very effective and convenient.

3.1. Homogeneous Fractional Telegraph Equation. Let us consider the time fractional tele-
graph equation [8, 13, 16, 19]

∂βu(x, t)

∂tβ
+ a

∂αu(x, t)

∂tα
+ bu(x, t) = c2

∂2u(x, t)

∂x2
, t > 0, 1 < β ≤ 2,

1

2
< α ≤ 1, (3.2)

with initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x). (3.3)
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By using Adomain decomposition method, we have

Iβ
[
∂βu(x, t)

∂tβ
+ a

∂αu(x, t)

∂tα
+ bu(x, t)

]
= Iβ

[
c2
∂2u(x, t)

∂x2

]
,

Iβ
[
∂βu(x, t)

∂tβ

]
= Iβ

[
c2
∂2u(x, t)

∂x2
− a

∂αu(x, t)

∂tα
− bu(x, t)

]
,

by using (2.5), (2.6) and (2.7) we have

u(x, t) = u(x, 0) + tut(x, 0) + Iβ
[
c2
∂2u(x, t)

∂x2
− a

∂αu(x, t)

∂tα
− bu(x, t)

]
.

By using the initial conditions, we get

u(x, t) = f(x) + tg(x) + Iβ
[
c2
∂2u(x, t)

∂x2
− a

∂αu(x, t)

∂tα
− bu(x, t)

]
.

Take

u0 = f(x) + g(x)t,

un+1 = Iβ
[
c2
∂2un(x, t)

∂x2
− a

∂αun(x, t)

∂tα
− bun(x, t)

]
.

Now, by iterating approach, we get

u1(x, t) = Iβ
[
c2
∂2u0(x, t)

∂x2
− a

∂αu0(x, t)

∂tα
− bu0(x, t)

]
,

= Iβ
[
c2f (2)(x) + c2g(2)(x)t− af(x)

t−α

Γ(1− α)

−ag(x) t1−α

Γ(2− α)
− bf(x)− bg(x)t

]
.

using the definitions (2.5), (2.6) and (2.7), we get

u1(x, t) =
tβ

Γ(β + 1)

[
c2f (2)(x)− bf(x)

]
+

tβ+1

Γ(β + 2)

[
c2g(2)(x)− bg(x)

]
−af(x) tβ−α

Γ(β − α+ 1)
− ag(x)

tβ−α+1

Γ(β − α+ 2)
.
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Next,

u2(x, t) = Iβ
[
c2
∂2u1(x, t)

∂x2
− a

∂αu1(x, t)

∂tα
− bu1(x, t)

]
,

= Iβ
[

tβ

Γ(β + 1)
[c4f (4)(x)− 2bc2f (2) + b2f(x)]

+
tβ+1

Γ(β + 2)
[c4g(4)(x)− 2bc2g(2) + b2g(x)]

+
tβ−α

Γ(β − α+ 1)
[−2ac2f (2)(x) + 2abf(x)]

+
tβ−α+1

Γ(β − α+ 2)
[−2ac2g(2)(x) + 2abg(x)]

+a2f(x)
tβ−2α

Γ(β − 2α+ 1)
+ a2g(x)

tβ−2α+1

Γ(β − 2α+ 2)

]
.

Again by definitions (2.5), (2.6) and (2.7) we get

u2(x, t) =
t2β

Γ(2β + 1)

[
c4f (4)(x) − 2bc2f (2)(x) + b2f(x)

]
+

t2β+1

Γ(2β + 2)

[
c4g(4)(x) − 2bc2g(2)(x) + b2g(x)

]
+

t2β−α

2β − α+ 1

[
− 2ac2f (2)(x) + 2abf(x)

]
+

t2β−α+1

2β − α+ 2

[
− 2ac2g(2)(x) + 2abg(x)

]
+a2f(x)

t2β−2α

Γ(2β − 2α+ 1)
+ a2g(x)

t2β−2α+1

Γ(2β − 2α+ 2)
,

by proceeding in this manner the solution of the time fractional telegraph equation is of the
form

u(x, t) =
∞∑
n=0

un(x, t) = u0(x, t) + u1(x, t) + · · · .
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Therefore,

u(x, t) =
tβ

Γ(β + 1)

[
c2f (2)(x)− bf(x)

]
+

tβ+1

Γ(β + 2)

[
c2g(2)(x)− bg(x)

]
−af(x) tβ−α

Γ(β − α+ 1)
− ag(x)

tβ−α+1

Γ(β − α+ 2)

+
t2β

Γ(2β + 1)

[
c4f (4)(x) − 2bc2f (2)(x) + b2f(x)

]
+

t2β+1

Γ(2β + 2)

[
c4g(4)(x) − 2bc2g(2)(x) + b2g(x)

]
+

t2β−α

2β − α+ 1

[
− 2ac2f (2)(x) + 2abf(x)

]
+

t2β−α+1

2β − α+ 2

[
− 2ac2g(2)(x) + 2abg(x)

]
+a2f(x)

t2β−2α

Γ(2β − 2α+ 1)
+ a2g(x)

t2β−2α+1

Γ(2β − 2α+ 2)
+ · · · .

3.2. Nonhomogeneous Fractional Telegraph Equation. Consider the time fractional tele-
graph equation [29, 32] of the form

∂αu(x, t)

∂tα
+ a

∂α−1u(x, t)

∂tα−1
+ bu(x, t) = c2

∂2u(x, t)

∂x2
+ h(x, t), t > 0, 1 < α ≤ 2, (3.4)

with initial conditions (3.3) by Adomain decomposition method we have

Iα
[
∂αu(x, t)

∂tα
+ a

∂α−1u(x, t)

∂tα−1
+ bu(x, t)

]
= Iα

[
c2
∂2u(x, t)

∂x2
+ h(x, t)

]
,

Iα
[
∂αu(x, t)

∂tα

]
= Iα

[
c2
∂2u(x, t)

∂x2
− a

∂α−1u(x, t)

∂tα−1
− bu(x, t) + h(x, t)

]
,

by using (2.5), (2.6) and (2.7) we have

u(x, t) = u(x, 0) + tut(x, 0) + Iαh(x, t) + Iα
[
c2
∂2u(x, t)

∂x2
− a

∂α−1u(x, t)

∂tα−1
− bu(x, t)

]
.

By using the initial conditions we have

u(x, t) = f(x) + tg(x) + Iαh(x, t) + Iα
[
c2
∂2u(x, t)

∂x2
− a

∂α−1u(x, t)

∂tα−1
− bu(x, t)

]
.

Take

u0 = f(x) + g(x)t+ Iαh(x, t),

un+1 = Iα
[
c2
∂2un(x, t)

∂x2
− a

∂α−1un(x, t)

∂tα−1
− bun(x, t)

]
.
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Now, by iteration, we have

u1(x, t) = Iα
[
c2
∂2u0(x, t)

∂x2
− a

∂α−1u0(x, t)

∂tα−1
− bu0(x, t)

]
,

u2(x, t) = Iα
[
c2
∂2u1(x, t)

∂x2
− a

∂α−1u1(x, t)

∂tα−1
− bu1(x, t)

]
,

by proceeding in this manner the solution of the nonhomogeneous time fractional telegraph
equation is of the form

u(x, t) =

∞∑
n=0

un(x, t) = u0(x, t) + u1(x, t) + · · · .

3.3. Numerical Examples.

Example 3.1. Consider the equation (3.2) with f(x) = 0 , g(x) = ex, a = 1, b = 1, c = 1
and 0 < x < 1 then the equation becomes

∂βu(x, t)

∂tβ
+
∂αu(x, t)

∂tα
+ u(x, t) =

∂2u(x, t)

∂x2
, t > 0, 1 < β ≤ 2,

1

2
< α ≤ 1. (3.5)

with initial conditions

u(x, 0) = 0 and ut(x, 0) = ex.

Then by Adomain decomposition method

u0(x, t) = ext,

u1(x, t) = −ex tβ−α+1

Γ(β − α+ 2)
,

u2(x, t) = ex
t2β−2α+1

Γ(2β − 2α+ 2)
,

u3(x, t) = −ex t3β−3α+1

Γ(3β − 3α+ 2)
, etc

by proceeding in this manner the solution of the time fractional telegraph equation is of the
form

u(x, t) =
∞∑
n=0

un(x, t) = u0(x, t) + u1(x, t) + · · · .

Therefore,

u(x, t) = ext− ex
tβ−α+1

Γ(β − α+ 2)
+ ex

t2β−2α+1

Γ(2β − 2α+ 2)
− ex

t3β−3α+1

Γ(3β − 3α+ 2)
+ . . .

= tex
[
1− tβ−α

Γ(β − α+ 2)
+

t2β−2α

Γ(2β − 2α+ 2)
− t3β−3α

Γ(3β − 3α+ 2)
+ . . .

]
= texEβ−α,2(−tβ−α).
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FIGURE 1. The graph is obtained for α = 0.5 and varying β.
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FIGURE 2. Surface plot

Therefore the solution of given telegraph equation is of the form u(x, t) = texEβ−α,2(−tβ−α).
The convergence [1, 26] of the series can be examined easily by simple ratio test. From Figure
1 it is observed that as time increases the solution u(x, t) decays exponentially in integer order
case compared to fractional order. Therefore the graph represents the decay of voltage or
current in the transmission line. Surface plot of equation (3.5) is given in Figure 2. The
exactness of the solution is clear by its convergence to the exact solution when α = 1, β = 2 it
coincides with the solution of classical telegraph equation.

u(x, t) =
ex − ex−t

t
.
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Example 3.2. Consider the equation (3.4) with a = 1, b = 1, f(x) = 0, g(x) = 0 and

h(x, t) = sinhx
tn

Γ(n+ 1)
the equation becomes

∂αu(x, t)

∂tα
+
∂α−1u(x, t)

∂tα−1
+ u(x, t) =

∂2u(x, t)

∂x2
+ sinhx

tn

Γ(n+ 1)
, (3.6)

with initial conditions

u(x, 0) = 0 and ut(x, 0) = 0.

Then by Adomain decomposition method we have

u0(x, t) = sinhx
tn+α

Γ(n+ α+ 1)
,

u1(x, t) = − sinhx
tn+α+1

Γ(n+ α+ 2)
,

u2(x, t) = sinhx
tn+α+2

Γ(n+ α+ 3)
, · · · .

The solution in the series form is given by

u(x, t) = sinhx
tn+α

Γ(n+ α+ 1)
− sinhx

tn+α+1

Γ(n+ α+ 2)
+ sinhx

tn+α+2

Γ(n+ α+ 3)
− · · · ,

= sinhx

[
tn+α

Γ(n+ α+ 1)
− tn+α+1

Γ(n+ α+ 2)
+

tn+α+2

Γ(n+ α+ 3)
− · · ·

]
The convergent [1, 26] of the series is examined by simple ratio test. From Figure 3 it is

observed that as time increases the solution u(x, t) decays exponentially in integer order case
compared to fractional order. Therefore the graph represents the decay of voltage or current in
the transmission line. Surface plot of equation (3.6) is given in Figure 4. The exactness of the
solution is clear by its convergence to the exact solution when α = 2 it coincides with solution
of classical telegraph equation

u(x, t) = sinhx

[
tn+2

Γ(n+ 3)
− tn+3

Γ(n+ 4)
+

tn+4

Γ(n+ 5)
− · · ·

]
.

4. DECOMPOSITION METHOD BY LAPLACE TRANSFORM

Let us consider the time fractional telegraph equation (3.2) with nonhomogeneous term
h(x, t) and initial conditions (3.3). On taking Laplace transformation with respect to t on
both side of the equation (3.2) we have

Lt

(
∂βu(x, t)

∂tβ

)
+ aLt

(
∂αu(x, t)

∂tα

)
+ bLt(u(x, t)) = Lt

(
c2
∂2u(x, t)

∂x2

)
+ Lt(h(x, t))
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sβLt(u(x, t))− sβ−1u(x, 0)− sβ−2ut(x, o) + aLt

(
∂αu(x, t)

∂tα

)
+ bLt(u(x, t))

= Lt

(
c2
∂2u(x, t)

∂x2

)
+ Lt(h(x, t)),
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by using initial condition we get

Lt(u(x, t)) =
f(x)

s
+
g(x)

s2
+

1

sβ
Lt(h(x, t)) +

1

sβ
Lt

(
c2
∂2u(x, t)

∂x2
− a

∂αu(x, t)

∂tα
− bu(x, t)

)
,

then taking inverse Laplace transformation

u(x, t) = L−1
t

[
f(x)

s
+
g(x)

s2
+

1

sβ
Lt(h(x, t))

]
+ L−1

t

1

sβ

[
Lt

(
c2
∂2u(x, t)

∂x2
− a

∂αu(x, t)

∂tα
− bu(x, t)

)]
,

on applying the Adomain decomposition method we have,

u0(x, t) = L−1
t

[
f(x)

s
+
g(x)

s2
+

1

sβ
Lt(h(x, t))

]
,

un+1(x, t) = L−1
t

1

sβ

[
Lt

(
c2
∂2u(x, t)

∂x2
− a

∂αu(x, t)

∂tα
− bu(x, t)

)]
.

On calculating u1(x, t), u2(x, t), · · · we get the series solution of the form

u(x, t) =

∞∑
n=0

un(x, t) = u0(x, t) + u1(x, t) + · · · .

Example 4.1. Considering the equation (3.2) with f(x) = 0 , g(x) = ex, a = 1, b = 1, c = 1
and 0 < x < 1 the equation becomes

∂βu(x, t)

∂tβ
+
∂αu(x, t)

∂tα
+ u(x, t) =

∂2u(x, t)

∂x2
, t > 0, 1 < β ≤ 2,

1

2
< α ≤ 1.

with initial conditions

u(x, 0) = 0 and ut(x, 0) = ex.

By taking Laplace transform on both sides we get,

sβLt(u(x, t))− sβ−1u(x, 0)− sβ−2ut(x, o) + Lt

(
∂αu(x, t)

∂tα

)
+ Lt(u(x, t))

= Lt

(
∂2u(x, t)

∂x2

)
,

on applying the conditions we have

Lt(u(x, t)) =
ex

s2
+ Lt

1

sβ

(
∂2u(x, t)

∂x2
− ∂αu(x, t)

∂tα
− u(x, t)

)
,

then taking inverse Laplace transform we get,

u(x, t) = L−1
t

[
ex

s2

]
+ L−1

t

[
Lt

(
∂2u(x, t)

∂x2
− ∂αu(x, t)

∂tα
− u(x, t)

)]
.
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Therefore, by Adomain decompositioin method we have

u0(x, t) = tex

u1(x, t) = −ex tβ−α+1

Γ(β − α+ 2)
,

by proceeding in this manner the solution of the time fractional telegraph equation is of the
form u(x, t) = texEβ−α,2(−tβ−α).

Example 4.2. If a = 1, b = 1, f(x) = 0, g(x) = 0 and h(x, t) = sinhx
tn

Γ(n+ 1)
in (3.4) and

(3.3) then by taking Laplace transform on both side we have

Lt(u(x, t)) =
1

sα
Lt

(
sinhx

tn

Γ(n+ 1)

)
+

1

sα
Lt

(
∂2u(x, t)

∂x2
− ∂α−1u(x, t)

∂tα−1
− u(x, t)

)
.

By taking inverse Laplace transform and on calculating u0(x, t), u1(x, t), · · · by Adomain de-
composition method we get

u0(x, t) = sinhx
tn+α

Γ(n+ α+ 1)
,

u1(x, t) = − sinhx
tn+α+1

Γ(n+ α+ 2)
,

by proceeding in this manner the solution of the equation is of the form

u(x, t) = sinhx

[
tn+α

Γ(n+ α+ 1)
− tn+α+1

Γ(n+ α+ 2)
+

tn+α+2

Γ(n+ α+ 3)
− . . .

]
Example 4.3. (Fourier and Laplace Transformation Method) Huang[16] effectively ap-
plied Fourier and Laplace transformation method to time fractional telegraph equation. Here,
a numerical example is given to illustrate this method. Consider the equation (3.2) by taking,
a = 1, b = 1, c = 1 the equation becomes

∂2αu(x, t)

∂t2α
+
∂αu(x, t)

∂tα
+ u(x, t) =

∂2u(x, t)

∂x2
, t > 0, 0 < x ≤ L (4.1)

with initial conditions

u(x, 0) = 0 and ut(x, 0) = ex.

by taking Fourier and Laplace transform with respect to the variables x and twe get the solution
of (4.1) of the form

u(x, t) =
2

L

∞∑
n=1

sin

(
nπx

L

)[
c1Eα,2(λ+t

α)− c2Eα,2(λ−t
α)

] ∫ L

0
ex sin

(
nπx

L

)
dx.
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where, λ+ =
−1 +

√
1− 4(1 + n2π2

4 )

2
, λ− =

−1−
√

1− 4(1 + n2π2

4 )

2
, c1 =

λ+
λ+ − λ−

and

c2 =
λ−

λ+ − λ−
.

5. CONCLUSION

The solution obtained from decomposition method by Laplace transform coincides with the
solution obtained from only decomposition method. Also it is necessary to note here that by
knowing initial condition alone we can get the exact solution and so it is more convenient
than double Laplace transform method where both initial and boundary conditions are needed.
Therefore Adomain decomposition method is an easier way to obtain exact solution for many
fractional partial differential equations. The solution we obtained here is a closed form series
solution in terms of Mittag-Leffler function. The series solution of time fractional telegraph
equation is analysed by plotting the solution for various fractional order and convergence is
verified.
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