• Title/Summary/Keyword: k-eigenvalue problem

Search Result 291, Processing Time 0.023 seconds

Alternative approach for the derivation of an eigenvalue problem for a Bernoulli-Euler beam carrying a single in-span elastic rod with a tip-mounted mass

  • Gurgoze, Metin;Zeren, Serkan
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1105-1126
    • /
    • 2015
  • Many vibrating mechanical systems from the real life are modeled as combined dynamical systems consisting of beams to which spring-mass secondary systems are attached. In most of the publications on this topic, masses of the helical springs are neglected. In a paper (Cha et al. 2008) published recently, the eigencharacteristics of an arbitrary supported Bernoulli-Euler beam with multiple in-span helical spring-mass systems were determined via the solution of the established eigenvalue problem, where the springs were modeled as axially vibrating rods. In the present article, the authors used the assumed modes method in the usual sense and obtained the equations of motion from Lagrange Equations and arrived at a generalized eigenvalue problem after applying a Galerkin procedure. The aim of the present paper is simply to show that one can arrive at the corresponding generalized eigenvalue problem by following a quite different way, namely, by using the so-called "characteristic force" method. Further, parametric investigations are carried out for two representative types of supporting conditions of the bending beam.

A Parallel Iterative Algorithm for Solving The Eigenvalue Problem of Symmetric matrices

  • Baik, Ran
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.99-110
    • /
    • 2000
  • This paper is devoted to the parallelism of a numerical matrix eigenvalue problem. The eigenproblem arises in a variety of applications, including engineering, statistics, and economics. Especially we try to approach the industrial techniques from mathematical modeling. This paper has developed a parallel algorithm to find all eigenvalues. It is contributed to solve a specific practical problem, a vibration problem in the industry. Also we compare the runtime between the serial algorithm and the parallel algorithm for the given problems.

  • PDF

ON A CLASS OF QUASILINEAR ELLIPTIC EQUATION WITH INDEFINITE WEIGHTS ON GRAPHS

  • Man, Shoudong;Zhang, Guoqing
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.857-867
    • /
    • 2019
  • Suppose that G = (V, E) is a connected locally finite graph with the vertex set V and the edge set E. Let ${\Omega}{\subset}V$ be a bounded domain. Consider the following quasilinear elliptic equation on graph G $$\{-{\Delta}_{pu}={\lambda}K(x){\mid}u{\mid}^{p-2}u+f(x,u),\;x{\in}{\Omega}^{\circ},\\u=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}^{\circ}$ and ${\partial}{\Omega}$ denote the interior and the boundary of ${\Omega}$, respectively, ${\Delta}_p$ is the discrete p-Laplacian, K(x) is a given function which may change sign, ${\lambda}$ is the eigenvalue parameter and f(x, u) has exponential growth. We prove the existence and monotonicity of the principal eigenvalue of the corresponding eigenvalue problem. Furthermore, we also obtain the existence of a positive solution by using variational methods.

Inverse Eigenvalue Problems with Partial Eigen Data for Acyclic Matrices whose Graph is a Broom

  • Sharma, Debashish;Sen, Mausumi
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.2
    • /
    • pp.211-222
    • /
    • 2017
  • In this paper, we consider three inverse eigenvalue problems for a special type of acyclic matrices. The acyclic matrices considered in this paper are described by a graph called a broom on n + m vertices, which is obtained by joining m pendant edges to one of the terminal vertices of a path on n vertices. The problems require the reconstruction of such a matrix from given partial eigen data. The eigen data for the first problem consists of the largest eigenvalue of each of the leading principal submatrices of the required matrix, while for the second problem it consists of an eigenvalue of each of its trailing principal submatrices. The third problem has an eigenvalue and a corresponding eigenvector of the required matrix as the eigen data. The method of solution involves the use of recurrence relations among the leading/trailing principal minors of ${\lambda}I-A$, where A is the required matrix. We derive the necessary and sufficient conditions for the solutions of these problems. The constructive nature of the proofs also provides the algorithms for computing the required entries of the matrix. We also provide some numerical examples to show the applicability of our results.

Adaptive Eigenvalue Decomposition Approach to Blind Channel Identification

  • Byun, Eul-Chool;Ahn, Kyung-Seung;Baik, Heung-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.317-320
    • /
    • 2001
  • Blind adaptive channel identification of communication channels is a problem of important current theoretical and practical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling leading to the so-called, second order statistics techniques. And adaptive blind channel identification techniques based on a off-line least-squares approach have been proposed. In this paper, a new approach is proposed that is based on eigenvalue decomposition. And the eigenvector corresponding to the minimum eigenvalue of the covariance matrix of the received signals contains the channel impulse response. And we present a adaptive algorithm to solve this problem. The performance of the proposed technique is evaluated over real measured channel and is compared to existing algorithms.

  • PDF

An Application of a Parallel Algorithm on an Image Recognition

  • Baik, Ran
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.219-224
    • /
    • 2017
  • This paper is to introduce an application of face recognition algorithm in parallel. We have experiments of 25 images with different motions and simulated the image recognitions; grouping of the image vectors, image normalization, calculating average image vectors, etc. We also discuss an analysis of the related eigen-image vectors and a parallel algorithm. To develop the parallel algorithm, we propose a new type of initial matrices for eigenvalue problem. If A is a symmetric matrix, initial matrices for eigen value problem are investigated: the "optimal" one, which minimize ${\parallel}C-A{\parallel}_F$ and the "super optimal", which minimize ${\parallel}I-C^{-1}A{\parallel}_F$. In this paper, we present a general new approach to the design of an initial matrices to solving eigenvalue problem based on the new optimal investigating C with preserving the characteristic of the given matrix A. Fast all resulting can be inverted via fast transform algorithms with O(N log N) operations.

PERTURBATION ANALYSIS OF DEFLATION TECHNIQUE FOR SYMMETRIC EIGENVALUE PROBLEM

  • JANG, HO-JONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.17-23
    • /
    • 2001
  • The evaluation of a few of the smallest eigenpairs of large symmetric eigenvalue problem is of great interest in many physical and engineering applications. A deflation-preconditioned conjugate gradient(PCG) scheme for a such problem has been shown to be very efficient. In the present paper we provide the numerical stability of a deflation-PCG with partial shifts.

  • PDF

An Eigenvalue Sensitivity Analysis of the Iterative Eigenvalue Calculation Algorithm (반복계산에 의한 고유치 계산 알고리즘에서의 고유치 감도해석)

  • Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.217-219
    • /
    • 2001
  • This paper presents a new eigenvalue sensitivity analysis method based on AESOPS algorithm. The additional calculation steps are derived from the original AESOPS algorithm. The additional calculation steps are performed directly from the AESOPS algorithm after iteratively calculating electro-mechanical oscillation modes in small signal stability problems. Owing to the structural characteristics of partitioned sub-matrix of state space equations, the partial differentiation terms of system state matrix for obtaining eigenvalue sensitivity indices can be calculated very simply. By the method presented in this paper, the AESOPS algorithm can be used in controller design problem as well as analysis of small signal stability problem.

  • PDF

Buckling analysis of structures under combined loading with acceleration forces

  • Wang, Wenjing;Gu, Randy
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.1051-1067
    • /
    • 2014
  • The structures of concern in this study are subject to two types of forces: dead loads from the acceleration imposed on the structures as well as the installed operation machines and the additional adjustable forces. We wish to determine the critical values of the adjustable forces when buckling of the structures occurs. The mathematical statement of such a problem gives rise to a constrained eigenvalue problem (CEVP) in which the dominant eigenvalue is subject to an equality constraint. A numerical algorithm for solving the CEVP is proposed in which an iterative method is employed to identify an interval embracing the target eigenvalue. The algorithm is applied to four engineering application examples finding the critical loads of a fixed-free beam subject to its own body force, two plane structures and one wide-flange beam using shell elements when acceleration force is present. The accuracy is demonstrated using the first example whose classical solution exists. The significance of the equality constraint in the EVP is shown by comparing the solutions without the constraint on the eigenvalue. Effectiveness and accuracy of the numerical algorithm are presented.