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EIGENVALUE PROBLEM OF BIHARMONIC EQUATION
WITH HARDY POTENTIAL

Yangxin Yao, Shaotong He, and Qingtang Su

Abstract. In this paper, we consider the eigenvalue problem of bihar-
monic equation with Hardy potential. We improve the results of refer-
ences by introducing a new Hilbert space.

1. Introduction

In 2006, Adimurthi, M. Grossi, and S. Santra [2] proved that, if 0 ∈ Ω ⊂
BR(0) is a bounded domain in R4, and R > 0, R1 > eR, then ∀u ∈ H2

0 (Ω) or
∀u ∈ H2(Ω) ∩H1

0 (Ω), we have
(1)∫

Ω

|4u|2 dx−
∫

Ω

u2

|x|4(lnR1/|x|)2 dx ≥
∞∑

i=2

∫

Ω

u2

|x|4(lnR1/|x|)2 X2
2 · · ·X2

i dx,

where −1 is the best constant and can’t be achieved by any nontrival function
u ∈ H2

0 (Ω) or ∀u ∈ H2(Ω) ∩H1
0 (Ω), where

Xi(x) := Yi

( |x|
R1

)
, i = 1, 2, 3, . . .

and
Y1(t) := (1− ln t)−1, t ∈ (0, 1],

Yi(t) := Yi−1(Y1(t)), t ∈ (0, 1], i = 2, 3, 4 . . . ,

Yi(0) = 0, Yi(1) = 1, 0 ≤ Yi(t) ≤ 1.

Furthermore, if we define

λ(Ω) = inf
u∈H2

0 (Ω)

{ ∫

Ω

|4u|2 dx−
∫

Ω

u2

|x|4(lnR/|x|)2 dx

∣∣∣∣
∫

Ω

u2 dx = 1
}

,
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then λ(Ω) can’t be achieved by any domain Ω. This means that the following
eigenvalue problem

(2)





42u− u

|x|4(lnR/|x|)2 = λu x ∈ Ω

u 6= 0 x ∈ Ω
u ∈ H2

0 (Ω)

has no solution for λ = λ(Ω). Adimurthi, M. Grossi, and S. Santra [2] have
considered the following eigenvalue problem

(3)





42u− q(x)u
|x|4(lnR/|x|)2 = λu x ∈ Ω

u 6= 0 x ∈ Ω
u ∈ H2

0 (Ω),

where 0 ≤ q(x) ≤ 1. Define

λ(q) = inf
u∈H2

0 (Ω)

{ ∫

Ω

|4u|2 dx−
∫

Ω

q(x)u2

|x|4(lnR/|x|)2 dx

∣∣∣∣
∫

Ω

u2 dx = 1
}

if N = 4, and q(x) satisfies the following assumptions, they have the following
interesting results:

(i) If q(x) satisfies

lim inf
x→0

(ln ln R/|x|)2(1− q(x)) > 3,

then λ(q) is achieved by u, and (3) has solutions for λ = λ(q). Furthermore, if
Ω is a unit ball centered with the origin, we can choose u > 0.

(ii) If Ω is a unit ball centered with the origin, then λ(q) is not achieved by
any non-negative function, provided q(x) satisfies

sup
0<|x|≤R1

(ln ln R/|x|)2(1− q(x)) ≤ 3

for some 0 < R1 < 1.
For the case N ≥ 5, A. Tertikas and N. Zographopolous [6] have proved the

following inequality
(4)∫

Ω

(
|4u|2 − N2(N − 4)2

16
|u|2
|x|4

)
dx ≥

(
1 +

N(N − 4)
8

) ∫

Ω

u2

|x|4(lnR/|x|)2 dx

which holds for any u ∈ H2
0 (Ω), where R > e sup

x∈Ω
|x|. If we define λN (Ω) as

λN (Ω) = inf
u∈H2

0 (Ω)

{ ∫

Ω

(
|4u|2 − N2(N − 4)2

16
|u|2
|x|4

)
dx

∣∣∣∣
∫

Ω

u2 dx = 1
}

,
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then λN (Ω) is not achieved by any domain Ω [6]. This means that the following
eigenvalue problem

(5)





42u− N2(N − 4)2

16
u

|x|4 = λu x ∈ Ω

u 6= 0 x ∈ Ω
u ∈ H2

0 (Ω)

has no solution for λ = λN (Ω). Adimurthi, M. Grossi, and S. Santra [2]
considered the following problem

(6)





42u− N2(N − 4)2

16
q(x)u
|x|4 = λu x ∈ Ω

u 6= 0 x ∈ Ω
u ∈ H2

0 (Ω),

where q ∈ C0(Ω), 0 ≤ q(x) ≤ 1. Let

λN (q) = inf
u∈H2

0 (Ω)

{ ∫

Ω

|4u|2 dx− N2(N − 4)2

16

∫

Ω

q(x)u2

|x|4 dx

∣∣∣∣
∫

Ω

u2 dx = 1
}

.

They get the following interesting results:
(i) λN (q) is achieved for some function u in H2

0 (Ω), and (6) has solutions for
λ = λN (q) if q(x) satisfies

(7) lim inf
x→0

(ln 1/|x|)2(1− q(x)) >
6(N2 − 4N + 8)

N2(N − 4)2
.

Furthermore, if Ω is a unit ball centered with the origin, then we can choose
u > 0.

(ii) If Ω is a unit ball centered with the origin, then λN (q) can’t be achieved
if q(x) satisfies

(8) sup
0<|x|≤R2

(ln 1/|x|)2(1− q(x)) ≤ 6(N2 − 4N + 8)
N2(N − 4)2

for some 0 < R2 < 1.
It seems that (7) and (8) can not be improved since they have given an

almost sufficient and necessary condition. Observe that if q(x) ≡ 1, the eigen-
value problems (3) and (6) have no non-trivial solution in H2

0 (Ω). So our
first consideration is to weaken the assumption of q(x) so that the result of
Adimurthi in [2] can be improved.

Actually, we can achieve this. We find that, if we consider the above prob-
lems in a new Hilbert space, whose norm is not equivalent to that of H2

0 (Ω),
the assumption of q(x) can be weaken.

Furthermore, we pay more attention to the eigenvalue problems with two
Hardy potential.
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(1) Let N ≥ 5. We consider the following problem:

(9)





42u− N2(N − 4)2

16
u

|x|4 − µ1
q(x)u

|x|4(lnR/|x|)2 = λη(x)u x ∈ Ω

u 6= 0 x ∈ Ω

u =
∂u

∂γ
= 0 x ∈ ∂Ω,

where 0 ≤ µ1 ≤ 1 + N(N − 4)/8.
(2) Let N = 4. We consider the weighted eigenvalue problem with two

Hardy potential as follow:
(10)



42u− u

|x|4(lnR/|x|)2 − µ2
q(x)u

|x|4(lnR/|x|)2(ln ln R/|x|)2 = λη(x)u x ∈ Ω

u 6= 0 x ∈ Ω

u =
∂u

∂γ
= 0 x ∈ ∂Ω,

where 0 ≤ µ2 ≤ 1.
For (9), µ1 = 1 + N(N − 4)/8 is the best constant of inequality (4) in the

right hand side. In this case, the singular term 1/(|x|4(lnR/|x|)2) is called the
critical potential.

For the case N = 4, no paper has proved that µ2 = 1 is the best constant
of inequality (1) in the right hand side. In this paper, we will give a positive
answer that 1 is the best constant. As a result, we are able to identify the
critical potential case with the non-critical case.

2. Main results

In order to state our main results, we construct a new Hilbert space as
follows.

We define H2,N
0,1 (Ω) as the completion of H2

0 (Ω) with respect to the norm
|| · ||H2,N

0,1 (Ω), where Ω ∈ RN , N ≥ 4. And the norm || · ||H2,N
0,1 (Ω) be defined as

‖u‖2
H2,N

0,1 (Ω)
=





∫

Ω

(
|4u|2 − u2

|x|4(ln R/|x|)2
)

dx, N = 4
∫

Ω

(
|4u|2 − N2(N − 4)2

16
u2

|x|4
)

dx, N ≥ 5

associated with the inner product

a(u, v) =





∫

Ω

(
4u4v − uv

|x|4(ln R/|x|)2
)

dx, N = 4
∫

Ω

(
4u4v − N2(N − 4)2

16
uv

|x|4
)

dx, N ≥ 5.
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Obviously, the norm || · ||H2,N
0,1 (Ω) is not equivalent to the norm || · ||H2

0
=

(
∫
Ω
|4u|2 dx)

1
2 . If 1 ≤ p < 2, by the W 1,p estimation in [2], we have

H2
0 (Ω) ⊂ H2,N

0,1 (Ω) ⊂ W 1,p
0 (Ω).

In order to see this, when N = 4, we give some examples to show this.
Consider the function u(x) = u(|x|) defined on B1(0), where

u(r) = (ln 1/r)a(ln ln 1/r)δ

in BR0(0) with 0 <R0 < e−1, and smooth up to the boundary on B1(0)\BR0(0).
It’s easy to check that u ∈ H2

0 (Ω) if and only if a < 1/2, or a = 1/2 and
δ < −1/2, while u ∈ H2,N

0,1 (Ω) if and only if a < 1/2, or a = 1/2 and δ < 0.
If N ≥ 5, we observe the function u(x) = u(|x|) defined on B1(0), where

u(r) = r−
N−4

2 (ln 1/r)a(ln ln 1/r)δ

in BR0(0) with 0 < R0 < e−1and smooth up to the boundary on B1(0)\BR0(0).
It’s easy to check that u ∈ H2

0 (Ω) if and only if a < −1/2, or a = −1/2 and
δ < −1/2, while u ∈ H2,N

0,1 (Ω) if and only if a < 0, or a = 0 and δ < 0.
Define L2

η(Ω) = {u | ∫
Ω

ηu2 dx < ∞} with the norm ||u||L2
η

= (
∫
Ω

ηu2 dx)1/2,
where η ≥ 0, and for N ≥ 5,

(11) lim sup
|x|→0

|x|4(lnR/|x|)2η(x) = 0

for N = 4,

(12) lim sup
|x|→0

|x|4(lnR/|x|)2(ln ln R/|x|)2η(x) = 0.

Obviously, η ≡ 1 satisfies the above conditions of η, and L2
1(Ω) = L2(Ω).

we mainly deal with the following problems:
• Some related theorems about the new Hilbert space H2,N

0,1 (Ω), including
the embedding theorem, maximum principle, etc.
• As an application of H2,N

0,1 (Ω), we consider the eigenvalue problem (9) as
well as (10), and find the existence of solutions and positive solutions.

(1) For N ≥ 5, we consider the eigenvalue problem with two singular terms
as problem (9), where η ≥ 0, η ∈ L∞(Ω\Br(0)), ∀r > 0, and η satisfies (11).
Define

λµ1(q) = inf
u∈H2,N

0,1 (Ω)

{
Iµ1(u)

∣∣∣∣
∫

Ω

η(x)u2 dx = 1
}

,

where

Iµ1(u) =
∫

Ω

(
|4u|2 − N2(N − 4)2

16
u2

|x|4 − µ1
q(x)u2

|x|4(ln R/|x|)2
)

dx.
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(2) Similarly, for the case of N = 4, we discuss the eigenvalue problem (10),
where η ≥ 0, η ∈ L∞(Ω\Br(0)), ∀r ≥ 0, and η satisfies (12). We define

τµ2(q) = inf
u∈H2,N

0,1 (Ω)

{
Jµ2(u)

∣∣∣∣
∫

Ω

η(x)u2 dx = 1
}

,

where

Jµ2(u) =
∫

Ω

(
|4u|2 − u2

|x|4(lnR/|x|)2 − µ2
q(x)u2

|x|4(lnR/|x|)2(ln ln R/|x|)2
)

dx.

Remark 2.1. It’s easy to check that the functionals Iµ1 ,Jµ2(µ1 < 1 + N(N −
4)/8, µ2 < 1) are coercive on H2,N

0,1 (Ω). It’s also easy to find that Jµ1 ,Iµ2 are
weak lower semicontinuous and lower bounded. However, we should be aware
that when µ1 = 1+N(N−4)/8, µ2 = 1, the functionals Iµ1 ,Jµ2 are not coercive
on H2,N

0,1 (Ω).

The main result of this paper is as follows:

Theorem 2.1. Let N ≥ 5, 0 ≤ µ1 ≤ 1 + N(N − 4)/8, q ∈ C0(Ω), 0 ≤ q(x) ≤
1, η(x) ≥ 0, η(x) ∈ L∞(Ω \Br(0)), ∀r > 0, and η satisfies (11). Then

(1) If 0 ≤ µ1 < 1+N(N − 4)/8, λµ1(q) can be achieved and problem (9) has
a nontrivial solution u ∈ H2,N

0,1 (Ω). Furthermore, if Ω is a unit ball centered
with the origin, then we can choose u > 0 on Ω.

(2) If µ1 = 1 + N(N − 4)/8, and q(x) satisfies the extra condition

(13) lim sup
|x|→0

q(x) = 0,

then λµ1(q) can be achieved and problem (9) has a nontrivial solution u ∈
H2,N

0,1 (Ω). Furthermore, if Ω is a unit ball centered with the origin, then we can
choose u > 0 on Ω.

Similar to Theorem 2.1, for the case of N = 4, we have the following theorem:

Theorem 2.2. Suppose that N = 4, 0 ≤ µ2 ≤ 1, q ∈ C0(Ω), 0 ≤ q(x) ≤
1, η(x) ≥ 0, η(x) ∈ L∞(Ω \Br(0)) for any r > 0, and η satisfies (12). Then

(1) If 0 ≤ µ2 < 1, τµ2(q) can be achieved and problem (10) has nontrivial
solutions u ∈ H2,N

0,1 (Ω).
(2) If µ2 = 1, and q(x) satisfies the extra condition

(14) lim sup
|x|→0

q(x) = 0,

then τµ2(q) is achieved and problem (10) has nontrivial solutions u ∈ H2,N
0,1 (Ω).

Furthermore, if Ω is a unit ball centered with the origin, we can choose u > 0
on Ω.
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3. Preliminary lemmas

Lemma 3.1. The Hilbert space H2,N
0,1 (Ω) is embedded into L2

η(Ω) and the em-
bedding is compact, where η ≥ 0, if N ≥ 5, then η satisfies (11), while N = 4
η satisfies (12).

Proof. We’ll divided the proof into two steps. The first step is to prove that
H2,N

0,1 (Ω) ↪→↪→ L2(Ω), while the second step is to prove H2,N
0,1 (Ω) ↪→↪→ L2

η(Ω).
Step one: Prove H2,N

0,1 (Ω) ↪→↪→ L2(Ω).

From Theorem A.2 of [2], there exist R0 > 0, C1 > 0, C2 > 0 such that ∀ R ≥
R0, ∀u ∈ H2

0 (Ω)




∫

Ω

(
|∆u|2 − u2

|x|4(lnR/|x|)2
)

dx ≥ C1||u||2W 1,p
0 (Ω)

, N = 4
∫

Ω

(
|∆u|2 − N2(N − 4)2

16
u2

|x|4
)

dx ≥ C2||u||2W 1,p
0 (Ω)

, N ≥ 5,

where 1 ≤ p < 2. Since H2
0 (Ω) is dense in H2,N

0,1 (Ω), then the above inequalities
are hold for any u ∈ H2,N

0,1 (Ω). It’s easy to check that H2,N
0,1 (Ω) ⊂ W 1,p

0 (Ω),
so H2,N

0,1 (Ω) ↪→ W 1,p
0 (Ω). Furthermore, if p > 2N

N+2 , by Sobolev embedding
theorem, the embedding W 1,p

0 (Ω) ↪→ L2(Ω) is compact. By [1], H2,N
0,1 (Ω) ↪→

L2(Ω) and the embedding is compact, i.e., H2,N
0,1 (Ω) ↪→↪→ L2(Ω).

Step two: Prove H2,N
0,1 (Ω) ↪→↪→ L2

η(Ω).

Since H2,N
0,1 (Ω) is a Hilbert space, it’s reflexive, and it’s separable since H2

0 (Ω) is
separable and H2,N

0,1 (Ω) is dense in H2
0 (Ω). By [3], the bounded set of H2,N

0,1 (Ω)
is weakly compact. Therefore, for any bounded sequence {un} ∈ H2,N

0,1 (Ω), up
to a subsequence, we can assume that

{
un ⇀ u, in H2,N

0,1 (Ω)
un → u, in L2(Ω).

Since for N ≥ 5, η satisfies (11), so ∀ ε > 0 small enough, there exists r > 0,
such that ∀|x| < r, |x|4(lnR/|x|)2η(x) < ε. Observe that

∫

Ω

η|un − u|2 dx =
∫

Br(0)

|x|4(lnR/|x|)2η |un − u|2
|x|4(lnR/|x|)2 dx

+
∫

Ω\Br(0)

η|un − u|2 dx.

Applying (4), ∀ε > 0, by the above discussion, there exists r = r(ε) > 0, such
that

∫

Br(0)

|x|4(lnR/|x|)2η |un − u|2
|x|4(lnR/|x|)2 dx
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< ε

∫

Br(0)

|un − u|2
|x|4(lnR/|x|)2 dx < Cε||un − u||2

H2,N
0,1 (Ω)

.

Since {un} is bounded in H2,N
0,1 (Ω), letting ε → 0, we have

∫
Br(0)

η|un − u|2 dx

→ 0. Moreover,∫

Ω\Br(0)

η|un − u|2 dx ≤ ||η||L∞(Ω\Br(0))||un − u||2L2(Ω) → 0, n →∞

therefore
∫
Ω

η|un − u|2 dx → 0, i.e., un → u in L2
η(Ω). If N = 4, the proof is

similar to that of N ≥ 5. This completes the proof. ¤
Lemma 3.2. Let N = 4. Then we have

inf
u∈H2

0 (Ω)

∫

Ω

(
|∆u|2 − u2

|x|4(lnR/|x|)2
)

dx

∫

Ω

u2

|x|4(ln R/|x|)2(ln ln R/|x|)2 dx

= 1.

Proof. For any ε > 0, fix δ > 0 and let

(15) uε(x) =

{
(ln R/|x|)1/2(ln ln R/|x|)1/2+ε, δ ≤ |x| ≤ R1 < 1
a|x|+ b, |x| ≤ δ

and uε is smooth up to the boundary. To guarantee uε has a continuous first
order derivative on |x| = δ, we require

a = − 1
2δ

(ln R/δ)−1/2(ln ln R/δ)1/2+ε − 1 + 2ε

2δ
(lnR/δ)−1/2(ln ln R/δ)−1/2+ε

and

b = (ln R/δ)1/2(ln ln R/δ)1/2+ε + 1/2(lnR/δ)−1/2(ln ln R/δ)1/2+ε

+
1 + 2ε

2
(ln R/δ)−1/2(ln ln R/δ)−1/2+ε.

Observe that∫

BR1 (0)

u2
ε

|x|4(lnR/|x|)2(ln ln R/|x|)2 dx

= 4ω4

∫ R1

0

u2
ε

r(lnR/r)2(ln ln R/r)2
dr

= 4ω4

∫ δ

0

(ar + b)2

r(ln R/r)2(ln ln R/r)2
dr+4ω4

∫ R1

δ

r−1(lnR/r)−1(ln ln R/r)−1+2ε dr

, A + B.

For A, we have

A = 4ω4

∫ δ

0

(
a2r

(ln R/r)2(ln ln R/r)2 + 2ab
(ln R/r)2(ln ln R/r)2 + b2

r(ln R/r)2(ln ln R/r)2

)
dr

, A1 + A2 + A3.
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For any 0 ≤ δ < 1, it’s easy to check that A1,A2,A3 converge to finite limit as
ε → 0.
For B, we have

B = 4ω4

∫ R1

δ

r−1(ln R/r)−1(ln ln R/r)−1+2ε dr →∞ (ε → 0)

so as ε → 0, we obtain
∫

BR1 (0)

u2
ε

|x|4(lnR/|x|)2(ln ln R/|x|)2 dx∼B=4ω4

∫ R1

δ

1
r ln R/r(ln ln R/r)1−2ε

dr.

By direct calculating, if 0 ≤ r ≤ δ, then

∆uε = 3ar−1

while if δ < r ≤ R1, then

∆uε = − r−2(lnR/r)−1/2(ln ln R/r)1/2+ε

− 1 + 2ε

r2
(lnR/r)−1/2(ln ln R/r)−1/2+ε

− 1
4r2

(ln R/r)−3/2(ln ln R/r)1/2+ε

+
−1/4 + ε2

r2
(lnR/r)−3/2(ln ln R/r)−3/2+ε

and therefore,
∫

BR1 (0)

(
|∆uε|2 − u2

ε

|x|4(ln R/|x|)2
)

dx

= 4ω4

∫ R1

0

(
|∆uε|2r3 − u2

ε

r(lnR/r)2

)
dr

= 36ω4

∫ δ

0

a2r dr − 4ω4

∫ δ

0

(ar + b)2

r(lnR/r)2
dr

+ 4ω4

∫ R1

δ

(
|∆uε|2 − r−1(ln R/r)−1(ln R/r)1+2ε

)
dr

, D1 + D2 + D3,

where




D1 = 36ω4

∫ δ

0

a2r dr

D2 = −4ω4

∫ δ

0

(ar + b)2

r(ln R/r)2
dr

D3 = 4ω4

∫ R1

δ

(
|∆uε|2 − r−1(ln R/r)−1(ln R/r)1+2ε

)
dr.
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Obviously, D1,D2 converge to finite limit as ε → 0. For D3,

D3 ∼ 4ω4

∫ R1

δ

1
r ln R/r(ln R/r)1−2ε

dr →∞

and therefore
∫

BR1 (0)

(|∆uε|2 − u2
ε

|x|4(lnR/|x|)2 ) dx v 4ω4

∫ R1

δ

1
r ln R/r(lnR/r)1−2ε

dr.

Hence, letting ε → 0, we obtain
∫

Ω

(|∆uε|2 − u2
ε

|x|4(ln R/|x|)2 ) dx

/∫

Ω

u2
ε

|x|4(lnR/|x|)2(ln ln R/|x|)2 dx → 1.

By inequality (1), the proof is completed. ¤

Remark 3.1. By Lemma 3.2, if µ2 = 1, the singular term

1/|x|4(lnR/|x|)2(lnR/|x|)2

in Theorem 2.2 is called critical potential.

Lemma 3.3. Consider the problem (9), where 0 ≤ µ1 ≤ 1 + N(N − 4)/8,
Ω = B is a unit ball in RN (N ≥ 5) centered with the origin. If (9) admits a
nontrivial solution u for λ = λµ1(q), then u doesn’t change sign in B.

Proof. The proof is similar to that of Theorem 5.1 of [2]. We will prove it by
contradiction. Assume that a solution u of (9) changes sign in B, define

K :=
{

v ∈ H2,N
0,1 (B) : v ≥ 0 a.e., v =

∂v

∂γ
= 0 on ∂B

}
.

Then K is a close convex cone and K is not empty. So there exists a projection
P : H2,N

0,1 (B) → K such that ∀ u ∈ H2,N
0,1 (B),∀ v ∈ K

(16) a(u− P (u), v − P (u)) ≤ 0.

Since K is a cone, we can replace v with tv in (16), where t > 0. Letting
t →∞, we have

a(u− P (u), v) ≤ lim
t→∞

1
t
a(u− P (u), P (u)).

Hence we have ∆2(u− P (u)) ≤ 0, by Boggio’s principle, u− P (u) ≤ 0. Mean-
while, if we replace v with tP (u) in (16), where t > 0, then we have

(t− 1)a(u− P (u), P (u)) ≤ 0

so we have a(u−P (u), P (u)) = 0. Therefore u can be divided into u = u1 +u2,
where u1 = P (u) ∈ K, u2 = u−P (u), with u2 ≤ 0. It’s not hard to check that

Iµ1(u1 − u2)∫
B

η|u1 − u2|2 dx
<

Iµ1(u1 + u2)∫
B

η|u1 + u2|2 dx
,
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it contradict with the definition of λµ1(q). Hence u doesn’t change sign in B.
Since the Green function is strictly positive, so u is strictly positive or negative
in B. ¤

Similarly we can prove the following theorem.

Lemma 3.4. Consider the problem (10), with 0 ≤ µ2 ≤ 1 and Ω = B is a unit
ball in R4 centered with the origin. If (10) admits a nontrivial solution u for
τ = τµ2(q), then u doesn’t change sign in B.

4. The proofs of Theorems 2.1, 2.2

Proof of Theorem 2.1. (1) If 0 ≤ µ1 < 1 + N(N − 4)/8, then it’s easy to check
that Iµ1(u) is coercive and weak lower semicontinuous in H2,N

0,1 (Ω). Define the
manifold

M :=
{

u ∈ H2,N
0,1 (Ω)

∣∣∣∣
∫

Ω

ηu2 dx = 1
}

.

Then M is a weakly closed subset of H2,N
0,1 (Ω). Obviously M is not empty. By

[8], Iµ1(u) admits its minimum by a minimizer u ∈ M . So λµ1(q) is achieved
and also the problem (9) has a nontrivial solution. By Lemma 3.3, we can
choose their solution u > 0.

(2) If µ1 = 1+N(N−4)/8, the functional Iµ1(u) is not coercive in H2,N
0,1 (Ω),

so we can not follow the steps of (1). To conquer the difficulty, we consider the
following problem:
(17)



42u− N2(N − 4)2

16
u

|x|4 −
(

1+
N(N − 4)

8

)
sq(x)u

|x|4(lnR/|x|)2 =λη(x)u x ∈ Ω

u 6= 0 x ∈ Ω

u =
∂u

∂γ
= 0 x∈∂Ω,

where 0 ≤ s < 1, q and η satisfy the assumptions of the theorem. Observe that
the operator

∆2 − N2(N − 4)2

16
1
|x|4 −

(
1 +

N(N − 4)
8

)
sq(x)

|x|4(lnR/|x|)2

is coercive in H2,N
0,1 (Ω). By the first part of the theorem, the above problem

admits a nontrivial solution us for λs(q) = λµ1(sq). And observe that us

||us||
H

2,N
0,1

is also a nontrivial solution of (17). Hence ∀ 0 ≤ s < 1, we can find {us} such
that us is a solution of (17) and ||us||H2,N

0,1 (Ω) = 1. Therefore, by Lemma 3.1,
up to a subsequence, we have

{
us ⇀ u1, in H2,N

0,1 (Ω)
us → u1, in L2

η(Ω).
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We will prove that us → u1 in H2,N
0,1 (Ω) as s → 1. In the fact, by (17), we have

∫

Ω

[
|∆us|2 − N2(N − 4)2

16
u2

s

|x|4 −
(

1 +
N(N − 4)

8

)
sq(x)u2

s

|x|4(ln R/|x|)2
]
dx

= λs(q)
∫

Ω

ηu2
s dx.

We will verify that, if we take ω(x) = q(x)
|x|4(ln R/|x|)2 , then ω satisfies the assump-

tion of η in the definition of L2
η(Ω).

(1) ∀x ∈ Ω, ω(x) ≥ 0 is obviously;
(2) ∀x ∈ Ω\Br(0), we have ω(x) ≤ r−4, where r > 0 and Br(0) ⊂ Ω. Hence

ω ∈ L∞(Ω\Br(0));
(3) Observe that q(x) satisfies (13), we have

lim sup
|x|→0

|x|4(lnR/|x|)2ω(x) = lim sup
|x|→0

q(x) = 0

therefore, L2
ω(Ω) is well defined. By Lemma 3.1, H2,N

0,1 (Ω) ↪→↪→ L2
ω(Ω). Hence,

we have

(18)





∫

Ω

q(x)u2
s

|x|4(lnR/|x|)2 dx →
∫

Ω

q(x)u2
1

|x|4(lnR/|x|)2 dx,

∫

Ω

ηu2
s dx →

∫

Ω

ηu2
1 dx.

Therefore

Iµ1(us) =
∫

Ω

[
|∆us|2−N2(N − 4)2

16
u2

s

|x|4−
(

1+
N(N − 4)

8

)
sq(x)u2

s

|x|4(lnR/|x|)2
]

dx

= λs(q)
∫

Ω

ηu2
s dx → λµ1(q)

∫

Ω

ηu2
1 dx.

By the weak lower semicontinuous of Iµ1 and the fact that λs(q) → λµ1(q) as
s → 1, we have

Iµ1(u1) ≤ lim inf
s→1

Iµ1(us) = λµ1(q)
∫

Ω

ηu2
1 dx.

By the definition of λµ1(q), we have Iµ1(u1) ≥ λµ1(q)
∫
Ω

ηu2
1 dx. Therefore,

Iµ1(u1) = λµ1(q)
∫
Ω

ηu2
1 dx, and

||us||2H2,N
0,1 (Ω)

=
∫

Ω

(
|∆us|2 − N2(N − 4)2

16
u2

s

|x|4
)

dx

=
(

1 +
N(N − 4)

8

) ∫

Ω

sq(x)u2
s

|x|4(lnR/|x|)2 dx + λs(q)
∫

Ω

ηu2
s dx

→
(

1 +
N(N − 4)

8

) ∫

Ω

qu2
1

|x|4(lnR/|x|)2 dx + λµ1(q)
∫

Ω

ηu2
1 dx
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=
∫

Ω

(
|∆u1|2 − N2(N − 4)2

16
qu2

1

|x|4
)

dx = ||u1||2H2,N
0,1 (Ω)

.

Hence ||us||H2,N
0,1 (Ω) → ||u1||H2,N

0,1 (Ω), i.e., us → u1 in H2,N
0,1 (Ω). So λµ1(q) is

achieved by u1, and the problem (9) has a nontrivial solution u1. By Theorem
3.3, if Ω is a unit ball centered with the origin, we can choose u > 0 or u < 0.
Observe that −u is also a solution of the problem (9), we can choose u > 0.
This completes the proof. ¤
Proof of Theorem 2.2. The proof of this theorem is similar to that of Theo-
rem 2.1. ¤
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