• Title/Summary/Keyword: k-dose

Search Result 15,342, Processing Time 0.047 seconds

A Study on the Dose Distribution for Total Body Irradiation using Co-60 Teletherapy Unit (Co-60 Teletherapy Unit를 이용한 전신조사의 선량분포에 관한 고찰)

  • Kim, Sung-Kyu;Shin, Sei-One;Kim, Myung-Se
    • Journal of Yeungnam Medical Science
    • /
    • v.6 no.2
    • /
    • pp.113-119
    • /
    • 1989
  • In recent years there has been a growing interest in total body, hemibody, total lymphoid irradiation. For refractory leukemia or lymphoma patients, various techniques and dose regimens were introduced, including high dose total body irradiation for destruction of leukemic or bone marrow cells and immunosuppression prior to bone marrow transplantation, and low dose total body irradiation for treatment of lymphocytic leukemia or lymphomas. Accurate provision for specified dose and the desired homogeneity are essential before clinical total body irradiation. Purposes of this paper are to discuss calibrating Cobalt Unit in 3m distance using Rando Phantom, to compare calculated dose, calibrated dose, and compensating filters for homogeneous dose distribution in the head and neck, the lung, and the pelvis. Results were following. 1. Measured dose on the lung was 6% higher than on the abdomen. Measured dose on the head (10%) and neck (18%) were higher than the abdomen because of thinness. Pelvic dose was measured 12% less than the abdomen. Those data suggest that compensating filter was essential. 2. Measured dose according to distance was 3% less than calculated dose which suggest that all doses in clinical use should be compared with calculated dose for minimizing error.

  • PDF

Experimental Evaluation of Proton Dose Calculations in Phantoms Simulating a Clinical Heterogeneity in Patients

  • Kohno, Ryosuke;Takada, Yoshihisa;Sakae, Takeji;Terunuma, Toshiyuki;Matsumoto, Keiji;Nohtomi, Akihiro;Matsuda, Hiroyuki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.208-210
    • /
    • 2002
  • In a treatment planning for actual patients with a complex internal structure, we often expect that proton beams, which pass through both a bolus and the heterogeneity in body, will form complex dose distributions. Therefore, the accuracy of the calculated dose distributions has to be verified for such a complex object. Then dose distributions formed by proton beams passing through both the bolus and phantoms simulating a clinical heterogeneity in patients were measured using a silicon semiconductor detector. The calculated results by the range-modulated pencil beam algorithm (RMPBA) produced large errors compared with the measured dose distributions since dose calculation using the RMPBA could not predict accurately the edge-scattering effect both in the bolus and in clinical heterogeneous phantoms. On the other hand, in spite of this troublesome heterogeneity, calculated results by the simplified Monte Carlo (SMC) method reproduced the experimental ones well. It is obvious that the dose-calculations by the SMC method will be more useful for application to the treatment planning for proton therapy.

  • PDF

Dose Distribution of Rectum and Bladder in Intracavitary Irradiation (자궁경부암 강내 방사선 조사장치에 의한 직장 및 방광의 피폭선량 평가)

  • Chu S. S.;Oh W. Y.;Suh C. O.;Kim G. E.
    • Radiation Oncology Journal
    • /
    • v.2 no.2
    • /
    • pp.261-270
    • /
    • 1984
  • The intrauterine irradiation is essential to achieve adequate tumor dose to central tumor mass of uterine malignancy in radiotherapy. The complications of pelvic organ are known to be directly related to radiation dose and physical parameters. The simulation radiation and medical records of 203 patients who were treated with intrauterine irradiation from Feb. 1983 to Oct. 1983, were critically analized. The physical parameters to include distances between lateral walls of vaginal fornices, longitudinal and lateral angles of tandem applicator to the body axis, the distance from the external os of uterine cervix to the central axis of ovoids were measured for low dose rate irradiation system and high dose rate remote control afterloading system. The radiation doses and dose distributions within cervical area including interesting points and bladder, rectum, according to sources arrangement and location of applicator, were estimated with personal computer. Followings were summary of study results ; 1. In distances between lateral walls of vaginal fornices, the low dose rate system showed as $4\~7cm$ width and high dose rate system showed as $5\~6cm$. 2. In horizontal angulation of tandem to body axis, the low dose rate system revealed mid position$64.6\%$, left deviation $19.2\%$and right deviation $16.2\%$. 3. In longitudinal angulation of tandem to body axis, the mid position was $11.8\%$ and anterior angulation $88.2\%$ in low dose rate system but in high dose rate system, anterior angulation was $98.5\%$. 4. Down ward displacement of ovoids below external os was only $3\%$ in low dose rate system and $66.7\%$ in high dose rate system. 5. In radiation source arrangement, the most activities of tandem and ovoid were 35 by 30 in low dose rate system but 50 by 40 in high dose rate system. 6. In low and high dose rate system, the total doses an4 TDF were 50, 70 Gy and 141, 123, including 40 Gy external irradiation. 7. The doses and TDF in interesting points Co, B, were 93, 47 Gy and 230, 73 in high dose rate system but in low doss rate system, 123, 52 Gy and 262, 75 respectively. 8. Doses and TDF in bladder and rectum were 70, 68 Gy and 124, 120 in low dose rate system, but in high dose rate system, 58, 64 Gy 98, 110 respectively, and then grades of injuries in bladder and rectum were 25, $30\%$ and 18, $23\%$ respectively.

  • PDF

Simulation for Dose-Rate Latchup by Transient Radiation Pulse in CMOS Device (CMOS 소자에서 과도방사선펄스에 의한 Dose-Rate Latchup 모의실험)

  • Lee, Hyun-Jin;Lee, Nam-Ho;Hwang, Young-Gwan
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1185-1186
    • /
    • 2008
  • A nuclear explosion emits a transient radiation pulse like gamma rays. Gamma rays have a high energy and cause unexpected effects in semiconductor devices. These effects are mainly referred to dose-rate latcup and dose-rate upset. By transient radiation pulse in CMOS devices, dose-rate latchup is simulated in this paper.

  • PDF

CHANGING OF RGS TRANSCRIPTS LEVELS BY LOW-DOSE-RATE IONIZING RADIATION IN MOUSE TESTIS

  • Kim, Tae-Hwan;Baik, Ji Sue;Heo, Kyu;Kim, Joong Sun;Lee, Ki Ja;Rhee, Man Hee;Kim, Sung Dae
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.3
    • /
    • pp.187-193
    • /
    • 2015
  • Deleterious effects of high dose radiation exposure with high-dose-rate are unarguable, but they are still controversial in low-dose-rate. The regulator of G-protein signaling (RGS) is a negative regulator of G protein-coupled receptor (GPCR) signaling. In addition, it is reported that irradiation stress led to GPCR-mediated mitogen-activated protein kinase (MAPK) and phosphotidylinositol 3-kinase (PI3-k) signaling. The RGS mRNA expression profiles by whole body radiation with low-dose-rate has not yet been explored. In the present study, we, therefore, examined which RGS was modulated by the whole body radiation with low-dose-rate ($3.49mGy{\cdot}h^{-1}$). Among 16 RGS expression tested, RGS6, RGS13 and RGS16 mRNA were down-regulated by low-dose-rate irradiation. This is the first report that whole body radiation with low-dose-rate can modulate the different RGS expression levels. These results are expected to reveal the potential target and/or the biomarker proteins associated with male testis toxicity induced by low-dose-rate irradiation, which might contribute to understanding the mechanism beyond the testis toxicity.

A New Method for Measuring the Dose Distribution of the Radiotherapy Domain using the IP

  • Homma, Mitsuhiko;Tabushi, Katsuyoshi;Obata, Yasunori;Tamiya, Tadashi;Koyama, Shuji;Kurooka, Masahiko;Shimomura, Kouhei;Ishigaki, Takeo
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.237-240
    • /
    • 2002
  • Knowing the dose distribution in a tissue is as important as being able to measure exposure or absorbed dose in radiotherapy. Since the Dry Imager spread, the wet type automatic processor is no longer used. Furthermore, the waste fluid after film development process brings about a serious problem for prevention of pollution. Therefore, we have developed a measurement method for the dose distribution (CR dosimetry) in the phantom based on the imaging plate (IP) of the computed radiography (CR). The IP was applied for the dose measurement as a dosimeter instead of the film used for film dosimetry. The data from the irradiated IP were processed by a personal computer with 10 bits and were depicted as absorbed dose distributions in the phantom. The image of the dose distribution was obtained from the CR system using the DICOM form. The CR dosimetry is an application of CR system currently employed in medical examinations to dosimetry in radiotherapy. A dose distribution can be easily shown by the Dose Distribution Depiction System we developed this time. Moreover, the measurement method is simpler and a result is obtained more quickly compared with film dosimetry.

  • PDF

Three dimensional Dose reconstruction based on transit dose measurement and Monte Carlo calculation (조사문 선량 분포와 Monte Carlo 계산을 이용한 삼차원 선량 재구성에 관한 연구)

  • Park, Dal;Yeo, In-Hwan;Kim, Dae-Yong;An, Yong-Chan;Heo, Seung-Jae
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.91-99
    • /
    • 2000
  • This is a preliminary study for developing the method of the dose reconstruction in the patients, irradiated by mega-voltage photon beams from the linear accelerator, using the transit dose distributions. In this study we present the method of three-dimensional dose reconstruction and evaluate the method by computer simulation. To acquire the dose distributions in the patients (or phantoms) we first calculate the differences between the doses at the arbitrary points in the patients and the doses at the corresponding points where the transit doses are measured. Then, we can get the dose in the patients from the measured transit dose and the calculated value of the difference. The dose differences are calculated by applying the inverse square law and using the linear attenuation coefficient. The scatter to primary dose ratios, which are calculated by the Monte Carlo program using the CT data of the patient (or phantoms), are also used in the calculations. For the evaluation of this method we used various kinds of homogeneous and inhomogeneous phantoms and calculated the transit dose distributions with the Monte Carlo program. From the distributions we reconstructed the dose distributions in the phantom. We used mono-energy Photon beam of 1.5MeV and Monte Carlo program EGS4. The comparison between the dose distributions reconstructed using the method and the distributions calculated by the Monte Carlo program was done. They agreed within errors of -4%∼+2%. This method can be used to predict the dose distributions in the patient

  • PDF

Feasibility of normal tissue dose reduction in radiotherapy using low strength magnetic field

  • Jung, Nuri Hyun;Shin, Youngseob;Jung, In-Hye;Kwak, Jungwon
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.226-232
    • /
    • 2015
  • Purpose: Toxicity of mucosa is one of the major concerns of radiotherapy (RT), when a target tumor is located near a mucosal lined organ. Energy of photon RT is transferred primarily by secondary electrons. If these secondary electrons could be removed in an internal cavity of mucosal lined organ, the mucosa will be spared without compromising the target tumor dose. The purpose of this study was to present a RT dose reduction in near target inner-surface (NTIS) of internal cavity, using Lorentz force of magnetic field. Materials and Methods: Tissue equivalent phantoms, composed with a cylinder shaped internal cavity, and adjacent a target tumor part, were developed. The phantoms were irradiated using 6 MV photon beam, with or without 0.3 T of perpendicular magnetic field. Two experimental models were developed: single beam model (SBM) to analyze central axis dose distributions and multiple beam model (MBM) to simulate a clinical case of prostate cancer with rectum. RT dose of NTIS of internal cavity and target tumor area (TTA) were measured. Results: With magnetic field applied, bending effect of dose distribution was visualized. The depth dose distribution of SBM showed 28.1% dose reduction of NTIS and little difference in dose of TTA with magnetic field. In MBM, cross-sectional dose of NTIS was reduced by 33.1% with magnetic field, while TTA dose were the same, irrespective of magnetic field. Conclusion: RT dose of mucosal lined organ, located near treatment target, could be modulated by perpendicular magnetic field.

Evaluating Correlation between Geometrical Relationship and Dose Difference Caused by Respiratory Motion Using Statistical Analysis

  • Shin, Dong-Seok;Kang, Seong-Hee;Kim, Dong-Su;Kim, Tae-Ho;Kim, Kyeong-Hyeon;Cho, Min-Seok;Noh, Yu-Yoon;Yoon, Do-Kun;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.203-212
    • /
    • 2016
  • Dose differences between three-dimensional (3D) and four-dimensional (4D) doses could be varied according to the geometrical relationship between a planning target volume (PTV) and an organ at risk (OAR). The purpose of this study is to evaluate the correlation between the overlap volume histogram (OVH), which quantitatively shows the geometrical relationship between the PTV and OAR, and the dose differences. 4D computed tomography (4DCT) images were acquired for 10 liver cancer patients. Internal target volume-based treatment planning was performed. A 3D dose was calculated on a reference phase (end-exhalation). A 4D dose was accumulated using deformation vector fields between the reference and other phase images of 4DCT from deformable image registration, and dose differences between the 3D and 4D doses were calculated. An OVH between the PTV and selected OAR (duodenum) was calculated and quantified on the basis of specific overlap volumes that corresponded to 10%, 20%, 30%, 40%, and 50% of the OAR volume overlapped with the expanded PTV. Statistical analysis was performed to verify the correlation with the OVH and dose difference for the OAR. The minimum mean dose difference was 0.50 Gy from case 3, and the maximum mean dose difference was 4.96 Gy from case 2. The calculated range of the correlation coefficients between the OVH and dose difference was from -0.720 to -0.712, and the R-square range for regression analysis was from 0.506 to 0.518 (p-value <0.05). However, when the 10% overlap volume was applied in the six cases that had OVH value ${\leq}2$, the average percent mean dose differences were $34.80{\pm}12.42%$. Cases with quantified OVH values of 2 or more had mean dose differences of $29.16{\pm}11.36%$. In conclusion, no significant statistical correlation was found between the OVH and dose differences. However, it was confirmed that a higher difference between the 3D and 4D doses could occur in cases that have smaller OVH value.

Solution to Decrease Spatial Dose Rate in Laboratory of Nuclear Medicine through System Improvement (시스템 개선을 통한 핵의학 검사실의 공간 선량률 감소방안)

  • Moon, Jae-Seung;Shin, Min-Yong;Ahn, Seong-Cheol;Yoo, Mun-Gon;Kim, Su-Geun
    • Quality Improvement in Health Care
    • /
    • v.20 no.1
    • /
    • pp.60-73
    • /
    • 2014
  • Objectives: This study aims at decreasing spatial dose rate through work improvement whilst spatial dose rate is the cause of increasing personal exposure dose which occurs in the process of handling radioisotope. Methods: From February 2013 until July 2013, divided into "before" and "after" the improvement, spatial dose rate in laboratory of nuclear medicine was measured in gamma image room, PET/CT-1 image room, and PET/CT-2 image room as its locations. The measurement time was 08:00, 12:00 and 17:00, and SPSS 21.0 USA was opted for its statistical analysis. Result: The spatial dose rate at distribution worktable, injection table, the entrance to the distribution room, and radioisotope storage box, which had showed high spatial dose rate, decreased by more than 43.7% a monthly average. The distribution worktable, that had showed the highest spatial dose rate in PET/CT-1 image room, dropped the rate to 42.3% as of July. The injection table and distribution worktable in the PET/CT-2 image room also showed the decline of spatial dose rate to 89% and 64.4%, respectively. Conclusion: By improving distribution process and introducing proper radiation shielding material, we were able to drop the spatial dose rate substantially at distribution worktable, injection table, and nuclide storage box. However, taking into account of steadily increasing amount of radioisotope used, strengthening radiation related regulations, and safe utilization of radioisotope, the process of system improvement needs to be maintained through continuous monitoring.