• Title/Summary/Keyword: k-connected graph

Search Result 145, Processing Time 0.02 seconds

REGULARITY OF SOAP FILM-LIKE SURFACES SPANNING GRAPHS IN A RIEMANNIAN MANIFOLD

  • Gulliver, Robert;Park, Sung-Ho;Pyo, Jun-Cheol;Seo, Keom-Kyo
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.967-983
    • /
    • 2010
  • Let M be an n-dimensional complete simply connected Riemannian manifold with sectional curvature bounded above by a nonpositive constant $-{\kappa}^2$. Using the cone total curvature TC($\Gamma$) of a graph $\Gamma$ which was introduced by Gulliver and Yamada [8], we prove that the density at any point of a soap film-like surface $\Sigma$ spanning a graph $\Gamma\;\subset\;M$ is less than or equal to $\frac{1}{2\pi}\{TC(\Gamma)-{\kappa}^2Area(p{\times}\Gamma)\}$. From this density estimate we obtain the regularity theorems for soap film-like surfaces spanning graphs with small total curvature. In particular, when n = 3, this density estimate implies that if $TC(\Gamma)$ < $3.649{\pi}\;+\;{\kappa}^2\inf\limits_{p{\in}F}Area(p{\times}{\Gamma})$, then the only possible singularities of a piecewise smooth (M, 0, $\delta$)-minimizing set $\Sigma$ are the Y-singularity cone. In a manifold with sectional curvature bounded above by $b^2$ and diameter bounded by $\pi$/b, we obtain similar results for any soap film-like surfaces spanning a graph with the corresponding bound on cone total curvature.

COMPETITION INDICES OF TOURNAMENTS

  • Kim, Hwa-Kyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.385-396
    • /
    • 2008
  • For a positive integer m and a digraph D, the m-step competition graph $C^m$ (D) of D has he same set of vertices as D and an edge between vertices u and v if and only if there is a vertex x in D such that there are directed walks of length m from u to x and from v to x. Cho and Kim [6] introduced notions of competition index and competition period of D for a strongly connected digraph D. In this paper, we extend these notions to a general digraph D. In addition, we study competition indices of tournaments.

A Study on Data Quality Management in Business Intelligence Environments (비즈니스 인텔리전스 환경에서 변환 관리를 이용한 데이터 품질 향상에 대한 연구)

  • Lee, Choon-Yeul
    • Information Systems Review
    • /
    • v.6 no.2
    • /
    • pp.65-77
    • /
    • 2004
  • Business intelligence assumes an integrated and inter-connected information resources. To manage an integrated database, we need to trace data transformation processes from its outset. For this purpose, this study proposes an extended Information Structure Graph that models data transformation steps in addition to data transformation structures. Using the graph, we can identify relationship among data entities and assign data quality measures to each nodes or arcs of a graph, thus eases management of data and enhancing their quality.

CHARACTERIZATION THEOREMS AND 4-ORDERABILITY ON INFINITE MAXIMAL PLANAR GRAPHS

  • Jung Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.577-587
    • /
    • 2006
  • We present several properties concerning infinite maximal planar graphs. Results related to the infinite VAP-free planar graphs are also included. Finally, we extend the result of W. Goddard, who showed that every finite 4-connected maximal planar graph is 4-ordered, to infinite strong triangulations.

ON GRAPHS WITH EQUAL CHROMATIC TRANSVERSAL DOMINATION AND CONNECTED DOMINATION NUMBERS

  • Ayyaswamy, Singaraj Kulandaiswamy;Natarajan, Chidambaram;Venkatakrishnan, Yanamandram Balasubramanian
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.843-849
    • /
    • 2012
  • Let G = (V, E) be a graph with chromatic number ${\chi}(G)$. dominating set D of G is called a chromatic transversal dominating set (ctd-set) if D intersects every color class of every ${\chi}$-partition of G. The minimum cardinality of a ctd-set of G is called the chromatic transversal domination number of G and is denoted by ${\gamma}_{ct}$(G). In this paper we characterize the class of trees, unicyclic graphs and cubic graphs for which the chromatic transversal domination number is equal to the connected domination number.

DEGREE CONDITIONS AND FRACTIONAL k-FACTORS OF GRAPHS

  • Zhou, Sizhong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.353-363
    • /
    • 2011
  • Let k $\geq$ 1 be an integer, and let G be a 2-connected graph of order n with n $\geq$ max{7, 4k+1}, and the minimum degree $\delta(G)$ $\geq$ k+1. In this paper, it is proved that G has a fractional k-factor excluding any given edge if G satisfies max{$d_G(x)$, $d_G(y)$} $\geq$ $\frac{n}{2}$ for each pair of nonadjacent vertices x, y of G. Furthermore, it is showed that the result in this paper is best possible in some sense.

Complete Deadlock Detection in a Distributed System (분산처리 시스템하에서의 모든 교착상태 발견을 위한 알고리즘)

  • Lee, Soo-Jung
    • Journal of The Korean Association of Information Education
    • /
    • v.2 no.2
    • /
    • pp.269-277
    • /
    • 1998
  • In most of the distributed deadlock detection algorithms using messages called probes, only a portion of the generated messages are effectively used, and hence the wasted probes cause heavy communication traffic. In this paper, a distributed deadlock detection algorithm is proposed which can efficiently detect deadlocks making use of those residue probes. Our algorithm is complete in the sense that they detect not only those deadlocks in which the initiator is involved as most other algorithms do, but all the other deadlocks that are present anywhere in a connected wait-for-graph. To detect all the deadlocks, the algorithms known to be most efficient require O(ne) messages, where e and n are the number of edges and nodes in the graph, respectively. The single execution of the presented algorithm can accomplish the same task with O(e) messages.

  • PDF

On the edge independence number of a random (N,N)-tree

  • J. H. Cho;Woo, Moo-Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.119-126
    • /
    • 1996
  • In this paper we study the asymptotic behavior of the edge independence number of a random (n,n)-tree. The tools we use include the matrix-tree theorem, the probabilistic method and Hall's theorem. We begin with some definitions. An (n,n)_tree T is a connected, acyclic, bipartite graph with n light and n dark vertices (see [Pa92]). A subset M of edges of a graph is called independent(or matching) if no two edges of M are adfacent. A subset S of vertices of a graph is called independent if no two vertices of S are adjacent. The edge independence number of a graph T is the number $\beta_1(T)$ of edges in any largest independent subset of edges of T. Let $\Gamma(n,n)$ denote the set of all (n,n)-tree with n light vertices labeled 1, $\ldots$, n and n dark vertices labeled 1, $\ldots$, n. We give $\Gamma(n,n)$ the uniform probability distribution. Our aim in this paper is to find bounds on $\beta_1$(T) for a random (n,n)-tree T is $\Gamma(n,n)$.

  • PDF

Graph Equations Involving Tensor Product of Graphs

  • Patil, H.P.;Raja, V.
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.2
    • /
    • pp.301-307
    • /
    • 2017
  • In this paper, we solve the following four graph equations $L^k(G)=H{\oplus}J$; $M(G)=H{\oplus}J$; ${\bar{L^k(G)}}=H{\oplus}J$ and ${\bar{M(G)}}=H{\oplus}J$, where J is $nK_2$ for $n{\geq}1$. Here, the equality symbol = means the isomorphism between the corresponding graphs. In particular, we shall obtain all pairs of graphs (G, H), which satisfy the above mentioned equations, upto isomorphism.

THE SPLIT AND NON-SPLIT TREE (D, C)-NUMBER OF A GRAPH

  • P.A. SAFEER;A. SADIQUALI;K.R. SANTHOSH KUMAR
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.511-520
    • /
    • 2024
  • In this paper, we introduce the concept of split and non-split tree (D, C)- set of a connected graph G and its associated color variable, namely split tree (D, C) number and non-split tree (D, C) number of G. A subset S ⊆ V of vertices in G is said to be a split tree (D, C) set of G if S is a tree (D, C) set and ⟨V - S⟩ is disconnected. The minimum size of the split tree (D, C) set of G is the split tree (D, C) number of G, γχST (G) = min{|S| : S is a split tree (D, C) set}. A subset S ⊆ V of vertices of G is said to be a non-split tree (D, C) set of G if S is a tree (D, C) set and ⟨V - S⟩ is connected and non-split tree (D, C) number of G is γχST (G) = min{|S| : S is a non-split tree (D, C) set of G}. The split and non-split tree (D, C) number of some standard graphs and its compliments are identified.