DEGREE CONDITIONS AND FRACTIONAL k-FACTORS OF GRAPHS

Sizhong Zhou

Abstract

Let $k \geq 1$ be an integer, and let G be a 2 -connected graph of order n with $n \geq \max \{7,4 k+1\}$, and the minimum degree $\delta(G) \geq k+1$. In this paper, it is proved that G has a fractional k-factor excluding any given edge if G satisfies $\max \left\{d_{G}(x), d_{G}(y)\right\} \geq \frac{n}{2}$ for each pair of nonadjacent vertices x, y of G. Furthermore, it is showed that the result in this paper is best possible in some sense.

1. Introduction

We investigate the fractional factor problem in graphs, which can be considered as a relaxation of the well-known cardinality matching problem. The fractional factor problem has wide-ranging applications in areas such as network design, scheduling and the combinatorial polyhedron. For example, in a communication network if we allow several large data packets to be sent to various destinations through several channels, the efficiency of the network will be improved if we allow the large data packets to be partitioned into small parcels. The feasible assignment of data packets can be seen as a fractional flow problem and it becomes a fractional matching problem when the destinations and sources of a network are disjoint (i.e., the underlying graph is bipartite).

In this paper, we consider only finite undirected graphs without loops or multiple edges. Let G be a graph of order n with vertex set $V(G)$ and edge set $E(G)$. For $x \in V(G)$, we denote by $d_{G}(x)$ the degree of x in G and by $N_{G}(x)$ the set of vertices adjacent to x in G. We write $N_{G}[x]$ for $N_{G}(x) \cup\{x\}$. For any $S \subseteq V(G)$, we define $d_{G}(S)=\sum_{x \in S} d_{G}(x)$. We denote by $G[S]$ the subgraph of G induced by S, and $G-S=G[V(G) \backslash S]$. If $G[S]$ has no edges, then S is called independent. Let S and T be disjoint subsets of $V(G)$, we denote the number of edges joining S and T by $e_{G}(S, T)$. We use $\delta(G)$ for the

[^0]minimum degree of G. We write $I(G)$ for the set of isolated vertices in G and $i(G)=|I(G)|$.

Let k be a positive integer. Then a spanning subgraph F of G is called a k-factor if $d_{F}(x)=k$ for each $x \in V(G)$. If $k=1$, then a k-factor is simply called a 1 -factor. A fractional k-factor is a way of assigning weights to the edges of a graph G (with all weights between 0 and 1) such that for each vertex the sum of the weights of the edges incident with that vertex is k. If $k=1$, then a fractional k-factor is a fractional 1 -factor. Some other terminologies and notations can be found in [1].

Zhou [9, 11] obtained some results on factors of graphs. Iida and Nishimura [2] gave a degree sum condition for graphs to have k-factors. Nishimura [6] showed a degree condition for graphs to have k-factors. Wang [7] obtained a degree condition for the existence of k-factors with prescribed properties. Zhou and Liu [12] showed a neighborhood condition for graphs to have fractional k factors. Zhou and Shen [13] gave a binding number condition for graphs to have fractional k-factors. Zhou [10] obtained some sufficient conditions for graphs to have fractional k-factors. Liu and Zhang [5] showed a toughness condition for graphs to have fractional k-factors. Yu and Liu [8] obtained a sufficient condition for graphs to have fractional k-factors.

The following results on k-factors and fractional k-factors are known.
Theorem 1 ([6]). Let k be an integer such that $k \geq 3$, and let G be a connected graph of order n with $n \geq 4 k-3$, kn even, and $\delta(G) \geq k$. Suppose that $\max \left\{d_{G}(x), d_{G}(y)\right\} \geq \frac{n}{2}$ for each pair of nonadjacent vertices x, y of G. Then G has a k-factor.
Theorem 2 ([7]). Let k be an integer such that $k \geq 3$, and let G be a 2connected graph of order n with $n \geq 4 k+1$, kn even, and $\delta(G) \geq k+1$. Suppose that $\max \left\{d_{G}(x), d_{G}(y)\right\} \geq \frac{n}{2}$ for each pair of nonadjacent vertices x, y of G. Then G has a k-factor excluding any given edge.
Theorem 3 ([12]). Let k be an integer such that $k \geq 1$, and let G be a connected graph of order n such that $n \geq 9 k-1-4 \sqrt{2(k-1)^{2}+2}$, and the minimum degree $\delta(G) \geq k$. If $\left|N_{G}(x) \cup N_{G}(y)\right| \geq \max \left\{\frac{n}{2}, \frac{1}{2}(n+k-2)\right\}$ for each pair of nonadjacent vertices $x, y \in V(G)$, then G has a fractional k-factor.

In this paper, we obtain a degree condition for the existence of fractional k factors with prescribed properties. The main result is an extension of Theorem 2. The main result will be given in the following section.

2. Results and proofs

The following results are essential to the proofs of our main theorems.
Lemma 2.1 ([4]). Let G be a graph. Then G has a fractional k-factor if and only if for every subset S of $V(G)$,

$$
\delta_{G}(S, T)=k|S|+d_{G-S}(T)-k|T| \geq 0
$$

where $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x) \leq k\right\}$.
Lemma 2.2 ([3]). A graph G has a fractional k-factor excluding any given edge if and only if for any $S \subseteq V(G)$ and $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x) \leq k\right\}$

$$
\delta_{G}(S, T)=k|S|+d_{G-S}(T)-k|T| \geq \varepsilon(S, T),
$$

or

$$
k|S|-\sum_{j=0}^{k-1}(k-j) p_{j}(G-S) \geq \varepsilon(S, T)
$$

where $p_{j}(G-S)=\left|\left\{x: d_{G-S}(x)=j\right\}\right|$, and $\varepsilon(S, T)$ is defined as follows,

$$
\varepsilon(S, T)= \begin{cases}2, & \text { if } T \text { is not independent, } \\ 1, & \text { if } T \text { is independent, and } e_{G}(T, V(G) \backslash(S \cup T)) \geq 1 \\ 0, & \text { otherwise. }\end{cases}
$$

In the following, we give our main theorems and prove them.
Theorem 4. Let G be a 2-connected graph of order n with $n \geq 7$ and $\delta(G) \geq 2$. If

$$
\max \left\{d_{G}(x), d_{G}(y)\right\} \geq \frac{n}{2}
$$

for each pair of nonadjacent vertices x, y of G, then G has a fractional 1-factor excluding any given edge.

Proof. Suppose that G satisfies the assumption of the theorem, but it has no desired fractional 1-factor. Then by Lemma 2.2, there exists some $S \subseteq V(G)$ such that

$$
\begin{equation*}
i(G-S)>|S|-\varepsilon(S, T) \tag{1}
\end{equation*}
$$

where $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x) \leq 1\right\}$. Clearly, $S \neq \emptyset$ since $\delta(G) \geq 2$ and G is 2-connected.

Claim 1. $|T|>|S|$.
Proof of Claim 1. If T is not independent, then $\varepsilon(S, T)=2$ and $|T| \geq i(G-$ $S)+2$. According to (1), we obtain

$$
|T| \geq i(G-S)+2>|S|-\varepsilon(S, T)+2=|S|
$$

If T is independent and $e_{G}(T, V(G) \backslash(S \cup T)) \geq 1$, then $\varepsilon(S, T)=1$ and $|T| \geq i(G-S)+1$. In view of (1), we get

$$
|T| \geq i(G-S)+1>|S|-\varepsilon(S, T)+1=|S|
$$

Otherwise, $\varepsilon(S, T)=0$ and $|T| \geq i(G-S)$. From (1), we have

$$
|T| \geq i(G-S)>|S|-\varepsilon(S, T)=|S| .
$$

This completes the proof of Claim 1 .

According to Claim 1 and $|S|+|T| \leq n$, we have

$$
\begin{equation*}
|S|<\frac{n}{2} \tag{2}
\end{equation*}
$$

Case 1. $|S|=1$.
In view of Claim 1, we have $|T| \geq 2$.
Subcase 1.1. T is not independent.
In this case, $\varepsilon(S, T)=2$. We prove firstly the following claim.
Claim 2. $|T| \geq 3$.
Proof of Claim 2. If $T=2$, then $e=u v \in E(G[T])$ for $u, v \in T$. Since G is 2connected, $G-S$ is connected. From $n \geq 7$, then there exists $x \in V(G) \backslash(S \cup T)$ such that x is adjacent to u or v. Hence, $d_{G-S}(u) \geq 2$ or $d_{G-S}(v) \geq 2$, which contradicts $d_{G-S}(y) \leq 1$ for any $y \in T$. This completes the proof of Claim 2.

According to $|T| \geq 3$ and the definition of T, then there exist $u, v \in T$ such that $u v \notin E(G)$. By the hypothesis of Theorem 4, we obtain

$$
\frac{n}{2} \leq \max \left\{d_{G}(u), d_{G}(v)\right\} \leq \max \left\{d_{G-S}(u), d_{G-S}(v)\right\}+|S| \leq|S|+1=2
$$

which implies

$$
n \leq 4
$$

This contradicts $n \geq 7$.

Subcase 1.2. T is independent.

In this case, $\varepsilon(S, T) \leq 1$. Since G is 2 -connected, then $G-S$ is connected. Thus, we have

$$
\begin{equation*}
i(G-S)=0 \tag{3}
\end{equation*}
$$

On the other hand, from (1) we obtain

$$
i(G-S)>|S|-\varepsilon(S, T) \geq|S|-1=0
$$

which contradicts (3).
Case 2. $|S|=2$.
By Claim 1, we have $|T| \geq 3$. According to (1) and $\varepsilon(S, T) \leq 2$, we obtain

$$
i(G-S)>|S|-\varepsilon(S, T) \geq|S|-2=0
$$

Therefore, there exists $x \in T$ with $d_{G-S}(x)=0$. Since $|T| \geq 3$, we have $y \in T \backslash\{x\}$ such that $d_{G-S}(y) \leq 1$ and $x y \notin E(G)$. In view of $n \geq 7$ and the hypothesis of Theorem 4, we have

$$
\frac{7}{2} \leq \frac{n}{2} \leq \max \left\{d_{G}(x), d_{G}(y)\right\} \leq d_{G-S}(y)+|S| \leq 3
$$

which is a contradiction.
Case 3. $|S| \geq 3$.
According to $\varepsilon(S, T) \leq 2$ and (1), we get that

$$
i(G-S) \geq|S|-\varepsilon(S, T)+1 \geq|S|-1 \geq 2
$$

Let $I(G-S)=\left\{x_{1}, x_{2}, \ldots, x_{i(G-S)}\right\}$. Clearly, $x_{i} x_{j} \notin E(G)(i \neq j$ and $i, j \in\{1,2, \ldots, i(G-S)\})$. Hence, for any two vertices x_{i} and x_{j}, we obtain $\max \left\{d_{G}\left(x_{i}\right), d_{G}\left(x_{j}\right)\right\} \geq \frac{n}{2}$ by the hypothesis of Theorem 4 . But by (2), $d_{G}\left(x_{i}\right) \leq|S|<\frac{n}{2}$ for all $x_{i} \in I(G-S)$. This is a contradiction. This completes the proof of Theorem 4.

Theorem 5. Let G be a 2-connected graph of order n with $n \geq 9$ and $\delta(G) \geq 3$. If

$$
\max \left\{d_{G}(x), d_{G}(y)\right\} \geq \frac{n}{2}
$$

for each pair of nonadjacent vertices x, y of G, then G has a fractional 2-factor excluding any given edge.

Proof. Suppose that G satisfies the assumption of Theorem 5, but it has no desired fractional 2-factor. Then by Lemma 2.2, there exists some $S \subseteq V(G)$ such that

$$
\begin{equation*}
2|S|-2 p_{0}(G-S)-p_{1}(G-S) \leq \varepsilon(S, T)-1 \tag{4}
\end{equation*}
$$

where $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x) \leq 2\right\}$. If $S=\emptyset$, then we have $p_{0}(G-S)=$ $p_{1}(G-S)=0$ by $\delta(G) \geq 3$. In this case, it is easy to see that $\varepsilon(S, T)=0$. From (4), we obtain

$$
0=2|S|-2 p_{0}(G-S)-p_{1}(G-S) \leq \varepsilon(S, T)-1=-1
$$

this is a contradiction. If $|S|=1$, then we have $p_{0}(G-S)=p_{1}(G-S)=0$ by $\delta(G) \geq 3$. According to (4) and $\varepsilon(S, T) \leq 2$, we get

$$
2=2|S|=2|S|-2 p_{0}(G-S)-p_{1}(G-S) \leq \varepsilon(S, T)-1 \leq 1
$$

a contradiction. In the following we may assume that $|S| \geq 2$. We prove firstly the following claim.

Claim 3. $|T|>|S|$.
Proof of Claim 3. If T is not independent, then $\varepsilon(S, T)=2$. Let $p_{1}(G-S) \geq 2$. Then $|T| \geq p_{0}(G-S)+p_{1}(G-S)$. Complying this with (4), we have

$$
|T| \geq p_{0}(G-S)+p_{1}(G-S) \geq|S|+\frac{p_{1}(G-S)-\varepsilon(S, T)+1}{2} \geq|S|+\frac{1}{2}
$$

According to the integrity of $|T|$ and $|S|$, we have $|T|>|S|$. Let $p_{1}(G-S) \leq 1$. Then $|T| \geq p_{0}(G-S)+2$. In view of (4), we obtain

$$
\begin{aligned}
|T| & \geq p_{0}(G-S)+2 \\
& \geq p_{0}(G-S)+p_{1}(G-S)+1 \geq|S|+\frac{p_{1}(G-S)-\varepsilon(S, T)+1}{2}+1 \\
& \geq|S|+\frac{1}{2}
\end{aligned}
$$

By the integrity of $|T|$ and $|S|$, we have $|T|>|S|$.

If T is independent and $e_{G}(T, V(G) \backslash(S \cup T)) \geq 1$, then $\varepsilon(S, T)=1$. Let $p_{1}(G-S) \geq 1$. Then we have $|T| \geq p_{0}(G-S)+p_{1}(G-S)$. By (4),

$$
|T| \geq p_{0}(G-S)+p_{1}(G-S) \geq|S|+\frac{p_{1}(G-S)-\varepsilon(S, T)+1}{2} \geq|S|+\frac{1}{2}
$$

In view of the integrity of $|T|$ and $|S|$, we obtain $|T|>|S|$. Let $p_{1}(G-S)=0$. From T is independent and $e_{G}(T, V(G) \backslash(S \cup T)) \geq 1$, we get $|T|>p_{0}(G-S)$. By $p_{1}(G-S)=0, \varepsilon(S, T)=1$ and (4),

$$
\begin{equation*}
p_{0}(G-S) \geq|S| \tag{5}
\end{equation*}
$$

From $|T|>p_{0}(G-S)$ and (5), we have

$$
|T|>p_{0}(G-S) \geq|S|
$$

Otherwise, $\varepsilon(S, T)=0$ and $|T| \geq p_{0}(G-S)+p_{1}(G-S)$. Complying this with (4), we obtain

$$
|T| \geq p_{0}(G-S)+p_{1}(G-S) \geq|S|+\frac{1}{2}
$$

According to the integrity of $|T|$ and $|S|$, we obtain $|T|>|S|$. This completes the proof of Claim 3.

In view of Claim 3 and $|S|+|T| \leq n$, we have

$$
\begin{equation*}
|S|<\frac{n}{2} \tag{6}
\end{equation*}
$$

Case 1. $p_{0}(G-S) \geq 2$.
Obviously, $|I(G-S)|=p_{0}(G-S) \geq 2$. For any $x, y \in I(G-S)$, we have $x y \notin E(G)$. According to the hypothesis of Theorem 5, there must exist at least one vertex, say y, such that $d_{G}(y) \geq \frac{n}{2}$. Complying this with $d_{G-S}(y)=0$ and (6), we obtain

$$
\frac{n}{2} \leq d_{G}(y) \leq d_{G-S}(y)+|S|=|S|<\frac{n}{2}
$$

This is a contradiction.
Case 2. $p_{0}(G-S)=1$.
Subcase 2.1. $p_{1}(G-S)=0$.
According to (4) and $\varepsilon(S, T) \leq 2$, we have

$$
2|S| \leq 2 p_{0}(G-S)+p_{1}(G-S)+1=3
$$

which contradicts $|S| \geq 2$.
Subcase 2.2. $\quad p_{1}(G-S) \geq 1$.
Since $p_{0}(G-S)=1$ and $p_{1}(G-S) \geq 1$, there exist $x, y \in T$ such that $d_{G-S}(x)=0$ and $d_{G-S}(y)=1$. Obviously, $x y \notin E(G)$. According to the hypothesis of Theorem 5, we obtain

$$
\frac{n}{2} \leq \max \left\{d_{G}(x), d_{G}(y)\right\} \leq d_{G-S}(y)+|S|=|S|+1
$$

that is,

$$
\begin{equation*}
|S| \geq \frac{n}{2}-1 \tag{7}
\end{equation*}
$$

If n is odd and since $|S|$ is an integer, we have $|S| \geq \frac{n-1}{2}$. Moreover, $p_{1}(G-S) \leq n-p_{0}(G-S)-|S| \leq n-1-\frac{n-1}{2}=\frac{n-1}{2}$. Hence, by (4) we obtain $1 \geq \varepsilon(S, T)-1 \geq 2|S|-2 p_{0}(G-S)-p_{1}(G-S) \geq 2 \cdot \frac{n-1}{2}-2-\frac{n-1}{2}=\frac{n-5}{2}$, which implies $n \leq 7$. This contradicts $n \geq 9$.

If n is even, then by (6) and (7) we have $|S|=\frac{n}{2}-1$. Furthermore, $p_{1}(G-$ $S) \leq n-p_{0}(G-S)-|S|=n-1-\left(\frac{n}{2}-1\right)=\frac{n}{2}$. Since $n \geq 9$ and n is even, we have $n \geq 10$.

For $n=10$, we have $p_{1}(G-S) \neq \frac{n}{2}=5$. Otherwise, $n=|S|+p_{0}(G-$ $S)+p_{1}(G-S)$. We write $P_{1}(G-S)=\left\{x: x \in V(G) \backslash S, d_{G-S}(x)=1\right\}$ and $p_{1}(G-S)=\left|P_{1}(G-S)\right|$. Then for each $x \in P_{1}(G-S), x$ is only adjacent to the vertices of $P_{1}(G-S)$ in $G-S$. It is impossible by $p_{1}(G-S)=5$ and the definition of $P_{1}(G-S)$. Thus, we obtain $p_{1}(G-S) \leq 4$. Complying this with (4) and $\varepsilon(S, T) \leq 2$,

$$
1 \geq \varepsilon(S, T)-1 \geq 2|S|-2 p_{0}(G-S)-p_{1}(G-S) \geq 8-2-4=2
$$

it is a contradiction.
For $n \geq 12$, we obtain by $|S|=\frac{n}{2}-1$ and $p_{1}(G-S) \leq \frac{n}{2}$
$2|S|-2 p_{0}(G-S)-p_{1}(G-S) \geq 2\left(\frac{n}{2}-1\right)-2-\frac{n}{2}=\frac{n}{2}-4 \geq 2 \geq \varepsilon(S, T)$.
This contradicts (4).
Case 3. $\quad p_{0}(G-S)=0$.
Subcase 3.1. $0 \leq p_{1}(G-S) \leq 2$.
From (4) and $|S| \geq 2$, we have

$$
\varepsilon(S, T)-1 \geq 2|S|-2 p_{0}(G-S)-p_{1}(G-S) \geq 2 \geq \varepsilon(S, T)
$$

which is a contradiction.
Subcase 3.2. $\quad p_{1}(G-S) \geq 3$.
In this case, there must exist $x, y \in P_{1}(G-S)$ such that $x y \notin E(G)$. According to the hypothesis of Theorem 5 , we obtain $\max \left\{d_{G}(x), d_{G}(y)\right\} \geq \frac{n}{2}$. Suppose that $d_{G}(y) \geq \frac{n}{2}$, we have $\frac{n}{2} \leq d_{G}(y) \leq d_{G-S}(y)+|S|=|S|+1$, which implies $|S| \geq \frac{n}{2}-1$. Furthermore, $p_{1}(G-S) \leq n-|S| \leq \frac{n}{2}+1$. By (4) and $n \geq 9$, we obtain

$$
1 \geq \varepsilon(S, T)-1 \geq 2|S|-p_{1}(G-S) \geq 2\left(\frac{n}{2}-1\right)-\left(\frac{n}{2}+1\right)=\frac{n}{2}-3 \geq \frac{3}{2}
$$

It is a contradiction. This completes the proof of Theorem 5 .
Theorem 6. Let $k \geq 1$ be an integer, and let G be a 2-connected graph of order n with $n \geq \max \{7,4 k+1\}$, and $\delta(G) \geq k+1$. If G satisfies

$$
\max \left\{d_{G}(x), d_{G}(y)\right\} \geq \frac{n}{2}
$$

for each pair of nonadjacent vertices x, y of G, then G has a fractional k-factor excluding any given edge.

Proof. By Theorem 4 and Theorem 5, the result obviously holds for $k=1$ and $k=2$. If $k \geq 3$ and $k n$ is even, then G has a k-factor excluding any given edge by Theorem 2. We have known that a k-factor is a special fractional k-factor. Hence, G has a fractional k-factor excluding any given edge. Now we consider the case that k and n are both odd.

Suppose that G satisfies the assumption of the theorem, but has not desired fractional k-factor. From Lemma 2.2, there exists a subset S of $V(G)$ such that

$$
\begin{equation*}
\delta_{G}(S, T)=k|S|+d_{G-S}(T)-k|T| \leq \varepsilon(S, T)-1 \tag{8}
\end{equation*}
$$

where $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x) \leq k\right\}$. Firstly, we prove the following claims.
Claim 4. $\quad S \neq \emptyset$.
Proof of Claim 4. If $S=\emptyset$, then by $\delta(G) \geq k+1$ and (8) we have

$$
\begin{aligned}
\varepsilon(S, T)-1 & \geq \delta_{G}(S, T)=k|S|+d_{G-S}(T)-k|T| \\
& =d_{G}(T)-k|T| \geq(\delta(G)-k)|T| \geq|T| \geq \varepsilon(S, T)
\end{aligned}
$$

which is a contradiction.
Claim 5. $|T| \geq k+1$.
Proof of Claim 5. Suppose that $|T| \leq k$. Then by $\delta(G) \geq k+1$, we obtain

$$
\begin{aligned}
\delta_{G}(S, T) & =k|S|+d_{G-S}(T)-k|T| \geq|T||S|+d_{G-S}(T)-k|T| \\
& =\sum_{x \in T}\left(|S|+d_{G-S}(x)-k\right) \geq \sum_{x \in T}(\delta(G)-k) \geq|T| \geq \varepsilon(S, T)
\end{aligned}
$$

This contradicts (8).
Claim 6. $|T| \geq|S|+1$.
Proof of Claim 6. If $|T| \leq|S|$, then by (8) we have

$$
\varepsilon(S, T)-1 \geq \delta_{G}(S, T)=k|S|+d_{G-S}(T)-k|T| \geq d_{G-S}(T) \geq \varepsilon(S, T)
$$

which is a contradiction.
Claim 7. $|S| \leq \frac{n-1}{2}$.
Proof of Claim 7. According to Claim 6 and $|S|+|T| \leq n$, we obtain

$$
n \geq|S|+|T| \geq 2|S|+1
$$

which implies

$$
|S| \leq \frac{n-1}{2}
$$

According to the hypothesis of Theorem 6 and since n is odd, we have

$$
\begin{equation*}
\max \left\{d_{G}(x), d_{G}(y)\right\} \geq \frac{n+1}{2} \tag{9}
\end{equation*}
$$

for each pair of nonadjacent vertices x, y of G.
By Claim 5, $T \neq \emptyset$. Now we define

$$
h_{1}=\min \left\{d_{G-S}(x): x \in T\right\}
$$

and let x_{1} be a vertex in T satisfying $d_{G-S}\left(x_{1}\right)=h_{1}$. Furthermore, if $T \backslash$ $N_{T}\left[x_{1}\right] \neq \emptyset$, we define

$$
h_{2}=\min \left\{d_{G-S}(x): x \in T \backslash N_{T}\left[x_{1}\right]\right\}
$$

and let x_{2} be a vertex in $T \backslash N_{T}\left[x_{1}\right]$ satisfying $d_{G-S}\left(x_{2}\right)=h_{2}$. Then we have $0 \leq h_{1} \leq h_{2} \leq k$ by the definition of T and $d_{G}\left(x_{i}\right) \leq|S|+h_{i}$ for $i=1,2$.

If $T \backslash N_{T}\left[x_{1}\right] \neq \emptyset$, then we have $|S|+h_{2} \geq \frac{n+1}{2}$. Otherwise we get $|S|+h_{1} \leq$ $|S|+h_{2}<\frac{n+1}{2}$, and this implies $d_{G}\left(x_{1}\right)<\frac{n+1}{2}$ and $d_{G}\left(x_{2}\right)<\frac{n+1}{2}$. Since $x_{1} x_{2} \notin E(G)$, that would contradict (9).

Now in order to prove the correctness of Theorem 6, we will deduce some contradictions according to the following cases.

Case 1. $T=N_{T}\left[x_{1}\right]$.
According to Claim 5, we know that T is not independent. In this case, $\varepsilon(S, T)=2$. In view of Claim 5 and $T=N_{T}\left[x_{1}\right]$, we have $k \geq h_{1}=d_{G-S}\left(x_{1}\right) \geq$ $|T|-1 \geq k$. Hence, $h_{1}=k$. By (8), Claim 4 and the definition of h_{1}, we obtain

$$
\begin{aligned}
1 & =\varepsilon(S, T)-1 \geq \delta_{G}(S, T)=k|S|+d_{G-S}(T)-k|T| \\
& \geq k|S|+h_{1}|T|-k|T|=k|S| \geq k \geq 3
\end{aligned}
$$

a contradiction.
Case 2. $T \backslash N_{T}\left[x_{1}\right] \neq \emptyset$.
By Claim 7 and $|S|+h_{2} \geq \frac{n+1}{2}$, we have

$$
\frac{n-1}{2} \geq|S| \geq \frac{n+1}{2}-h_{2}
$$

that is,

$$
\begin{equation*}
h_{2} \geq 1 \tag{10}
\end{equation*}
$$

According to (10), $n \geq 4 k+1,|S|+|T| \leq n,|S|+h_{2} \geq \frac{n+1}{2}, h_{1} \leq h_{2} \leq k$ and $\left|N_{T}\left[x_{1}\right]\right| \leq d_{G-S}\left(x_{1}\right)+1=h_{1}+1$, we obtain

$$
\begin{aligned}
\delta_{G}(S, T) & =k|S|+d_{G-S}(T)-k|T| \\
& \geq k|S|+h_{1}\left|N_{T}\left[x_{1}\right]\right|+h_{2}\left(|T|-\left|N_{T}\left[x_{1}\right]\right|\right)-k|T| \\
& =k|S|+\left(h_{1}-h_{2}\right)\left|N_{T}\left[x_{1}\right]\right|+\left(h_{2}-k\right)|T| \\
& \geq k|S|+\left(h_{1}-h_{2}\right)\left(h_{1}+1\right)+\left(h_{2}-k\right)(n-|S|) \\
& =\left(2 k-h_{2}\right)|S|+\left(h_{1}-h_{2}\right)\left(h_{1}+1\right)+\left(h_{2}-k\right) n \\
& \geq\left(2 k-h_{2}\right)\left(\frac{n+1}{2}-h_{2}\right)+\left(h_{1}-h_{2}\right)\left(h_{1}+1\right)+\left(h_{2}-k\right) n
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{h_{2}-1}{2}-h_{1}\right)^{2}+\frac{3}{4} h_{2}^{2}+\left(\frac{n}{2}-2 k-1\right) h_{2}+k-\frac{1}{4} \\
& \geq \frac{3}{4} h_{2}^{2}+\left(\frac{n}{2}-2 k-1\right) h_{2}+k-\frac{1}{4} \\
& \geq \frac{3}{4} h_{2}^{2}-\frac{1}{2} h_{2}+k-\frac{1}{4} \\
& \geq \frac{3}{4}-\frac{1}{2}+k-\frac{1}{4} \\
& =k>2 \geq \varepsilon(S, T)
\end{aligned}
$$

this contradicts (8).
From all the cases above, we deduce the contradictions. Hence, G has a fractional k-factor excluding any given edge. This completes the proof of Theorem 6.

Remark 1. Let us show that the condition $\max \left\{d_{G}(x), d_{G}(y)\right\} \geq \frac{n}{2}$ in Theorem 6 cannot be replaced by $\max \left\{d_{G}(x), d_{G}(y)\right\} \geq \frac{n}{2}-1$. Let $t \geq 2$ and $k \geq 1$ be two integers. We construct a graph $G=\left((k t-2) K_{1} \cup K_{2}\right) \vee(k t+1) K_{1}$. Obviously, G is 2-connected, $\delta(G)=k t \geq 2 k \geq k+1, n=|V(G)|=2 k t+1 \geq 4 k+1$ and

$$
\frac{n}{2}>\max \left\{d_{G}(x), d_{G}(y)\right\}>\frac{n}{2}-1
$$

for each pair of nonadjacent vertices x, y of $(k t+1) K_{1} \subset G$. Let $G^{\prime}=G-$ $\left.E\left(K_{2}\right), S=V\left((k t-2) K_{1} \cup K_{2}\right)\right) \subseteq V(G)$ and $T=V\left((k t+1) K_{1}\right) \subseteq V(G)$. Then $|S|=k t,|T|=k t+1$ and $d_{G^{\prime}-S}(T)=0$. Thus, we get

$$
\begin{aligned}
\delta_{G^{\prime}}(S, T) & =k|S|+d_{G^{\prime}-S}(T)-k|T| \\
& =k^{2} t-k(k t+1) \\
& =-k<0 .
\end{aligned}
$$

By Lemma 2.1, G^{\prime} has no fractional k-factor, that is, Theorem 6 does not hold. In the above sense, the result in Theorem 6 is best possible.

Remark 2. In the following, we show that the bound on n in Theorem 6 is also best possible. Let $k \geq 2$ be an integer. We construct a graph $G=$ $K_{2 k-1} \vee\left(K_{1} \cup k K_{2}\right)$. Then G satisfies all conditions of Theorem 6 except $n=4 k$. Let $S=V\left(K_{2 k-1}\right)$ and $T=V\left(K_{1} \cup k K_{2}\right)$. Clearly, $d_{G-S}(T)=2 k$ and T is not independent. In this case, $\varepsilon(S, T)=2$. Thus, we obtain

$$
\begin{aligned}
\delta_{G}(S, T) & =k|S|+d_{G-S}(T)-k|T| \\
& =k(2 k-1)+2 k-k(2 k+1) \\
& =0<2=\varepsilon(S, T)
\end{aligned}
$$

According to Lemma 2.2, Theorem 6 does not hold.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
[2] T. Iida and T. Nishimura, An Ore-type condition for the existence of k-factors in graphs, Graphs Combin. 7 (1991), no. 4, 353-361.
[3] Z. Li, G. Yan, and X. Zhang, On fractional (g, f)-deleted graphs, Math. Appl. (Wuhan) 16 (2003), no. 1, 148-154.
[4] G. Liu and L. Zhang, Fractional (g, f)-factors of graphs, Acta Math. Sci. Ser. B Engl. Ed. 21 (2001), no. 4, 541-545.
[5] , Toughness and the existence of fractional k-factors of graphs, Discrete Math. 308 (2008), no. 9, 1741-1748.
[6] T. Nishimura, A degree condition for the existence of k-factors, J. Graph Theory 16 (1992), no. 2, 141-151.
[7] C. Wang, A degree condition for the existence of k-factors with prescribed properties, Int. J. Math. Math. Sci. 2005 (2005), no. 6, 863-873.
[8] J. Yu and G. Liu, Fractional k-factors of graphs, Gongcheng Shuxue Xuebao 22 (2005), no. 2, 377-380.
[9] S. Zhou, Independence number, connectivity and (a, b, k)-critical graphs, Discrete Math. 309 (2009), no. 12, 4144-4148.
[10] , Some new sufficient conditions for graphs to have fractional k-factors, Int. J. Comput. Math. 88 (2011), no. 3, 484-490.
[11] S. Zhou and J. Jiang, Notes on the binding numbers for (a, b, k)-critical graphs, Bull. Austral. Math. Soc. 76 (2007), no. 2, 307-314.
[12] S. Zhou and H. Liu, Neighborhood conditions and fractional k-factors, Bull. Malays. Math. Sci. Soc. (2) 32 (2009), no. 1, 37-45.
[13] S. Zhou and Q. Shen, On fractional (f, n)-critical graphs, Inform. Process. Lett. 109 (2009), no. 14, 811-815.

School of Mathematics and Physics
Jiangsu University of Science and Technology
Mengxi Road 2, Zhenjiang, Jiangsu 212003, P. R. China
E-mail address: zsz_cumt@163.com

[^0]: Received July 30, 2009; Revised February 4, 2010.
 2010 Mathematics Subject Classification. 05C70.
 Key words and phrases. graph, degree, k-factor, fractional k-factor.
 This research was supported by Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (10KJB110003) and Jiangsu University of Science and Technology (2010SL101J, 2009SL148J, 2009SL154J), and was sponsored by Qing Lan Project of Jiangsu Province.

