• 제목/요약/키워드: jump-diffusion process

검색결과 19건 처리시간 0.025초

ASYMPTOTIC RUIN PROBABILITIES IN A GENERALIZED JUMP-DIFFUSION RISK MODEL WITH CONSTANT FORCE OF INTEREST

  • Gao, Qingwu;Bao, Di
    • 대한수학회지
    • /
    • 제51권4호
    • /
    • pp.735-749
    • /
    • 2014
  • This paper studies the asymptotic behavior of the finite-time ruin probability in a jump-diffusion risk model with constant force of interest, upper tail asymptotically independent claims and a general counting arrival process. Particularly, if the claim inter-arrival times follow a certain dependence structure, the obtained result also covers the case of the infinite-time ruin probability.

FIRST PASSAGE TIME UNDER A REGIME-SWITCHING JUMP-DIFFUSION MODEL AND ITS APPLICATION IN THE VALUATION OF PARTICIPATING CONTRACTS

  • Dong, Yinghui;Lv, Wenxin;Wu, Sang
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1355-1376
    • /
    • 2019
  • We investigate the valuation of participating life insurance policies with default risk under a geometric regime-switching jump-diffusion process. We derive explicit formula for the Laplace transform of the price of participating contracts by solving integro-differential system and then price them by inverting Laplace transforms.

A MULTIVARIATE JUMP DIFFUSION PROCESS FOR COUNTERPARTY RISK IN CDS RATES

  • Ramli, Siti Norafidah Mohd;Jang, Jiwook
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권1호
    • /
    • pp.23-45
    • /
    • 2015
  • We consider counterparty risk in CDS rates. To do so, we use a multivariate jump diffusion process for obligors' default intensity, where jumps (i.e. magnitude of contribution of primary events to default intensities) occur simultaneously and their sizes are dependent. For these simultaneous jumps and their sizes, a homogeneous Poisson process. We apply copula-dependent default intensities of multivariate Cox process to derive the joint Laplace transform that provides us with joint survival/default probability and other relevant joint probabilities. For that purpose, the piecewise deterministic Markov process (PDMP) theory developed in [7] and the martingale methodology in [6] are used. We compute survival/default probability using three copulas, which are Farlie-Gumbel-Morgenstern (FGM), Gaussian and Student-t copulas, with exponential marginal distributions. We then apply the results to calculate CDS rates assuming deterministic rate of interest and recovery rate. We also conduct sensitivity analysis for the CDS rates by changing the relevant parameters and provide their figures.

불완전시장 하에서의 옵션가격의 결정 (Valuation of Options in Incomplete Markets)

  • Park, Byungwook
    • 한국경영과학회지
    • /
    • 제29권2호
    • /
    • pp.45-57
    • /
    • 2004
  • The purpose of this paper is studying the valuation of option prices in Incomplete markets. A market is said to be incomplete if the given traded assets are insufficient to hedge a contingent claim. This situation occurs, for example, when the underlying stock process follows jump-diffusion processes. Due to the jump part, it is impossible to construct a hedging portfolio with stocks and riskless assets. Contrary to the case of a complete market in which only one equivalent martingale measure exists, there are infinite numbers of equivalent martingale measures in an incomplete market. Our research here is focusing on risk minimizing hedging strategy and its associated minimal martingale measure under the jump-diffusion processes. Based on this risk minimizing hedging strategy, we characterize the dynamics of a risky asset and derive the valuation formula for an option price. The main contribution of this paper is to obtain an analytical formula for a European option price under the jump-diffusion processes using the minimal martingale measure.

EULER-MARUYAMA METHOD FOR SOME NONLINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH JUMP-DIFFUSION

  • Ahmed, Hamdy M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권1호
    • /
    • pp.43-50
    • /
    • 2014
  • In this paper we discussed Euler-Maruyama method for stochastic differential equations with jump diffusion. We give a convergence result for Euler-Maruyama where the coefficients of the stochastic differential equation are locally Lipschitz and the pth moments of the exact and numerical solution are bounded for some p > 2.

ENDOGENOUS DOWNWARD JUMP DIFFUSION AND BLOW UP PHENOMENA BEFORE CRASH

  • Kwon, Young-Mee;Jeon, In-Tae;Kang, Hye-Jeong
    • 대한수학회보
    • /
    • 제47권6호
    • /
    • pp.1105-1119
    • /
    • 2010
  • We consider jump processes which has only downward jumps with size a fixed fraction of the current process. The jumps of the pro cesses are interpreted as crashes and we assume that the jump intensity is a nondecreasing function of the current process say $\lambda$(X) (X = X(t) process). For the case of $\lambda$(X) = $X^{\alpha}$, $\alpha$ > 0, we show that the process X shold explode in finite time, say $t_e$, conditional on no crash For the case of $\lambda$(X) = (lnX)$^{\alpha}$, we show that $\alpha$ = 1 is the borderline of two different classes of processes. We generalize the model by adding a Brownian noise and examine the blow up properties of the sample paths.

Stationary bootstrap test for jumps in high-frequency financial asset data

  • Hwang, Eunju;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • 제23권2호
    • /
    • pp.163-177
    • /
    • 2016
  • We consider a jump diffusion process for high-frequency financial asset data. We apply the stationary bootstrapping to construct a bootstrap test for jumps. First-order asymptotic validity is established for the stationary bootstrapping of the jump ratio test under the null hypothesis of no jump. Consistency of the stationary bootstrap test is proved under the alternative of jumps. A Monte-Carlo experiment shows the advantage of a stationary bootstrapping test over the test based on the normal asymptotic theory. The proposed bootstrap test is applied to construct continuous-jump decomposition of the daily realized variance of the KOSPI for the year 2008 of the world-wide financial crisis.

APPROXIMATIONS OF OPTION PRICES FOR A JUMP-DIFFUSION MODEL

  • Wee, In-Suk
    • 대한수학회지
    • /
    • 제43권2호
    • /
    • pp.383-398
    • /
    • 2006
  • We consider a geometric Levy process for an underlying asset. We prove first that the option price is the unique solution of certain integro-differential equation without assuming differentiability and boundedness of derivatives of the payoff function. Second result is to provide convergence rate for option prices when the small jumps are removed from the Levy process.

Term Structure Estimation Using Official Rate

  • Rhee, Joon Hee;Kim, Yoon Tae
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.655-663
    • /
    • 2003
  • The fundamental tenn structure model is based on the modelling of the short rate. It is well-known that the short rate depends on the interest rate policy of monetary authorities, especially on the official rate. Babbs and Webber(1994) modelled the tenn structure of interest rates using the official rate. They assume that the official rate follows a jump process. This reflects that the official rate infrequently changes. In this paper, we test this official tenn structure model and compare the jump-diffusion model with the pure diffusion model.