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FIRST PASSAGE TIME UNDER A REGIME-SWITCHING

JUMP-DIFFUSION MODEL AND ITS APPLICATION IN THE

VALUATION OF PARTICIPATING CONTRACTS

Yinghui Dong, Wenxin Lv, and Sang Wu

Abstract. We investigate the valuation of participating life insurance
policies with default risk under a geometric regime-switching jump-diffu-

sion process. We derive explicit formula for the Laplace transform of the

price of participating contracts by solving integro-differential system and
then price them by inverting Laplace transforms.

1. Introduction

Participating contracts are very popular since they provide a basic benefit
to the policyholders. There is a lot of literature investigating the valuation
of participating policies. See for example, Briys and de Varenne [2, 3] price
the participating policies under the assumption that default can occur only at
maturity within the framework of Black-Scholes model. Grosen and Jøgrgensen
[13] focus on the modeling of early default of the participating contracts under a
diffusion model. Dong [10] and Dong and Wang [9] derive the Laplace transform
for the price of participating contracts under a two-sided jump-diffusion model.

As life insurance contracts are long term products, these instruments should
be subject to the changes of economic regimes. Yet, the aforementioned liter-
ature on the valuations of participating life insurance contracts does not take
into account changes of market regimes. Regime-switching models have been
widely used in financial economics and insurance, see Buffington and Elliott
[4], Siu et al. [6], Xu et al. [20], Dong et al. [11], Jin et al. [15] and Fan et
al. [12]. Regime switches are triggered by structural changes in different stages
of business cycles. Siu [18] investigates the fair valuation of a participating life
insurance policy under a regime-switching geometric Brownian motion.
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Regime-switching jump-diffusion processes have attracted a lot of attention
since they can capture both the long-run and short-run behaviors of the un-
derlying funds simultaneously. See for example, Siu et al. [19] consider the
valuation of participating life insurance products for default at maturity under
a generalized jump-diffusion model which includes regime-switching and jump-
diffusion models. Hieber [14] investigates the pricing of equity-linked life insur-
ance contracts which offer cliquet-style return guarantees in a regime-switching
Lévy model. Since they mainly price maturity return guarantees, the pricing
formulas they derive are not associated with the joint distribution of the first
passage time of the overshoot. To better protect the policyholders’ benefits,
regulatory authorities set early default mechanisms to monitor financial status
of insurance companies, which forces the insurance company to be liquidated
once a preset default threshold is achieved. In this paper we will derive the
valuation of participating contracts under a geometric regime-switching jump-
diffusion process for early default mechanisms, in which the valuation of the
embedded options are linked to the joint Laplace transform of the first passage
time and the overshoot.

Recently, Siu et al. [6] investigate the valuation of equity-linked life insurance
contracts with various embedded options under a regime-switching, double ex-
ponential jump-diffusion process by using the Laplace transform of the first pas-
sage time. By using the conditional independence and conditional memoryless
properties of the exponential distribution, Kijima and Siu [16] also present the
analytical solution for the Laplace transform of the joint distribution of the first
passage time and the overshoot under a regime-switching double-exponential
jump-diffusion model. Note that, the results presented in Siu et al. [6] and
Kijima and Siu [16] both rely on the conditional independence of the exponen-
tial distribution. Xu et al. [20] consider a structural form credit risk model in
which the value of a firm and the default threshold are described by two de-
pendent double exponential regime-switching jump-diffusion processes. They
derive the integro-differential equations satisfied by the Laplace transform of
the first passage time and the expected discounted ratio of the firm value to
the default threshold at default and explicitly solve them.

Under the process with jumps, the value of the firm jumps due to the arrival
of unexpected market information or special events. Intuitively, there may be
a variety of information since a firm may invest in multiple risky assets. If dif-
ferent kinds of information are assumed to arrive as regime-switching Poisson
processes and the jump sizes caused by the same kind of information are as-
sumed to follow a regime-switching double-exponential distribution, then the
jumps of the firm can be described by a regime-switching hyper-exponential
jump-diffusion process, which is much more flexible than a regime-switching
double-exponential jump-diffusion process. So, we generalize the model in
Xu et al. [20] to a regime-switching hyper-exponential jump-diffusion process
and extend the application of regime-switching jump-diffusion processes in the
credit risk modeling to the valuation of participating contracts. Furthermore,
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the pricing of the defaultable bond in Xu et al. [20] is only associated with
the joint Laplace transform of the first passage time and the overshoot, while
the valuation of participating contracts depends on not only the joint Laplace
transform but the distribution of the Markov chain at the first passage time.
Therefore, we derive the explicit formulas for the joint Laplace transform and
the distribution of the Markov chain at the first passage time when the size
of jumps has a regime-switching hyper-exponential distribution, which is much
more complex than that in Xu et al. [20]. Based on the results, we present
the Laplace transform of the price of participating contracts and then numeri-
cally price participating contracts via inverting the Laplace transform. In fact,
the results we present could be very useful for the valuation of some com-
plex path-dependent options under a general regime-switching jump-diffusion
model, since the hyper-exponential distribution is very rich enough to approx-
imate many other distributions, including the normal distribution and various
heavy-tailed distributions such as Gamma and Pareto distributions.

This article is organized as follows. In Section 2, we present the participat-
ing contracts. Section 3 introduces the underlying dynamics and provides the
derivation of the joint distribution of the first passage time, the overshoot and
the Markov chain at the first passage time under a generalized regime-switching
jump-diffusion model. In Section 4, we derive the closed-form expression for the
joint Laplace transform of the first passage time and the overshoot and the dis-
tribution of the Markov chain at the first passage time when the size of jumps
has a regime-switching hyper-exponential distribution. Based on the result, we
give the closed-form formula for the Laplace transform of the price of partici-
pating life insurance contracts. Section 5 carries out some numerical analysis by
inverting the Laplace transforms via the Euler inversion algorithm. Section 6
concludes. The appendix presents the derivations of the characteristic equation
for solving the integro-differential system satisfied by the joint Laplace trans-
form under the regime-switching hyper-exponential jump-diffusion process.

2. The contract

Let (Ω,F ,F, P ) be a filtered complete probability space where the filtration
F := {Ft | t ∈ T } satisfies the usual conditions with T = [0, T ] and T <∞. As
in Dong (2011), we assume that an equivalent martingale measure Q, under
which the discounted prices at the riskfree interest rate r are Q-martingales,
has been chosen.

Consider that an insurance company has only two types of agents: policy-
holders and shareholders. At the initiation of the contract, the policyholder
provides a lump sum L0 in a single premium contract; the insurer invests initial
equity E0 > 0. Consequently, the initial asset value of the insurance company
is A0 = L0 + E0. Denote the liability-to-asset ratio by α = L0

A0
∈ (0, 1). The

policyholders are guaranteed a fixed amount LgT = L0e
rgT at the maturity T ,

where rg < r is the guaranteed interest rate. However, the terminal payoff
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to the policyholders is associated with financial risks and default risk of the
insurance company. Now we specify these payments to the policyholders and
the insurance company and the early default mechanism.

Following Le Courtois and Quittard-Pinon [7], we use the so-called structural
approach of bankruptcy to define the early default. Let Bt = γL0e

rgt, 0 < γ <
1, be the default barrier. The default time is defined as the first hitting time:

(2.1) τ = inf{t ∈ [0, T ] |At ≤ Bt}.

Note that the asset value at default Aτ is completely distributed to the policy-
holders since γ < 1.

In the participating contract, if there is no default before maturity, then the
policyholder receives the amount ΘL(T ) as follows (see Briys and De Varenne
[2]):

ΘL(T ) =


AT , AT < LgT ,

LgT , LgT ≤ AT ≤
Lg

T

α ,

LgT + β(αAT − LgT ), AT >
Lg

T

α .

The payoff ΘL(T ) can be rewritten in a more compact form:

(2.2) ΘL(T ) = LgT + β(αAT − LgT )+ − (LgT −AT )+,

where we have used x+ = max{x, 0}. It is obvious that ΘL(T ) is a combination
of a fixed payment LgT , a bonus call and a shorted put option on the insurance
company’s assets.

If the default occurs, then the policyholders receives the asset value at de-
fault, Aτ . To sum up, the policyholder’s payoff at T can also be expressed
as

VL(T ) = 1{τ>T}ΘL(T ) + 1{τ≤T}Aτe
r(T−τ).

The policyholder will retain the residual assets at maturity: AT − VL(T ).

3. The model

Assume that there exists a process X := {Xt}t≥0 which represents the
switches among the different macro economic states. Let X be a continuous-
time Markov chain taking values in E = {e1, . . . , eN}, where ei = (0, . . . , 0, 1,
0, . . . , 0)∗ ∈ RN , a∗ denotes the transpose of a vector or a matrix a. The
generator of the Markov chain is denoted by A = (aij)i,j=1,2,...,N . Denote by
FX := {FX

t | t ∈ T } the filtration generated by X.
Assume that the initial asset value A0 of the insurance company may be

invested in some risky and risk-free assets. Therefore, under the process with
jumps, the asset value At may have different classes of jumps related to the
invested assets. We assume the insurance company invests in m different kinds
of stocks and we use the regime-switching pure jump process to model the jump
component in the asset value process At.
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Consider a regime-switching pure jump process, S := {S(t) | t ∈ T }, such
that

(3.1) S(t) =

m∑
l=1

Nl(t)∑
i=1

ξ
(l)
i ,

where Nl := {Nl(t) | t ∈ T } is a regime-switching Poisson process with the
stochastic intensity λlt = 〈λl, Xt〉, for a vector λl = (λl1, . . . , λlN )∗ ∈ RN

with λlj > 0 for l = 1, . . . ,m, j = 1, . . . , N and 〈·, ·〉 denote the Euclidean

scalar product in RN . The jump amounts ξ
(l)
j , j = 1, 2, . . . are assumed to be

independent and identically distributed with the common conditional density
f lt(y) for each l = 1, . . . ,m, conditional on the Markov chain X. Assume
f lt(·) = 〈f l(·), Xt〉, where f l(·) = (f l1(·), . . . , f lN (·))∗ ∈ RN and for each l =
1, . . . , N , f lj satisfies

∫∞
−∞ eyxf lj(x)dx < ∞ for some y > 0. Furthermore, we

assume N1, . . ., Nm, {ξ(1)j , j = 1, 2, . . .}, . . . {ξ(m)
j , j = 1, 2, . . .} are mutually

independent, given the path of the Markov chain X.

Lemma 3.1. Let {S(t)}t≥0 be defined in (3.1). Then {S(t)}t≥0 is a regime-
switching Compound Poisson process, which can be expressed as

(3.2) S(t) =

N(t)∑
i=1

Zi,

where the intensity of the regime-switching Poisson N(t) is λ(t) = 〈λ, Xt〉, for
λ = (λ1, λ2, . . . , λN )∗ ∈ RN with λj =

∑m
l=1 λ

lj for j = 1, 2, . . . , N , the com-
mon density function is given by ft(·) = 〈f(·), Xt〉, for f(·) = (f1(·), . . . , fN (·))∗
∈ RN with

(3.3) fj(x) =

m∑
l=1

λlj

λj
f lj(x).

Proof. From Lemma 3.2 of Dong et al. [11], we have

E
[
eyS(t)|FX

t

]
=

m∏
l=1

E

ey Nl(t)∑
i=1

X
(l)
i |FX

t

 = e
∫ t
0
〈G(y),Xs〉ds,

where G(y) = (G1(y), . . . , GN (y))∗, with

Gj(y) = λj(

m∑
l=1

λlj

λj

∫ ∞
0

eyzf lj(z)dz − 1) <∞.

Then Lemma A.1 of Buffington and Elliott [4] gives

E
[
eyS(t)

]
= 〈exp{(diag(G(y)) +A)t}1, X0〉.
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Similarly, we can also prove that

E

ey N(t)∑
i=1

Zi

 = 〈exp{(diag(G(y)) +A)t}1, X0〉,

which concludes the proof. �

Remark 3.2. When f lj is the density function of a double exponential dis-
tribution, then fj is the density function of a hyper-exponential distribution.
Therefore, the regime-switching hyper-exponential jump-diffusion process out-
performs the regime-switching double exponential jump-diffusion process in
modeling the dynamics of a company’s asset value since the asset value of each
company may be affected by different kinds of shock events.

Assume that the asset value process under the risk-neutral measure Q is
given by

(3.4) At = A0e
∫ t
0
µ(s)ds+

∫ t
0
σ(s)dW (s)+S(t),

for t ≥ 0, where A0 > 0 is the initial assets value;

(3.5) µ(t) = 〈µ, Xt〉, σ(t) = 〈σ, Xt〉,
for constant vectors µ = (µ1, µ2, . . . , µN )∗,σ = (σ1, σ2, . . . , σN )∗, with µi =
r − 1

2σ
2
i − λi(

∫∞
−∞ ezfi(z)dz − 1) and σi > 0 for each i = 1, 2, . . . , N ; W :=

{W (t) | t ∈ T } is a standard Q-Brownian motion.
Let

Y (t) =

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW (s) + S(t)− rgt

.
=

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW (s) + S(t),

where µ(t) = 〈µ, Xt〉, for a constant vector µ = (µ1, µ2, . . . , µN )∗, with µi =
µi − rg.

We now specify the information structure of our model. Let FY
t := {FY

t | t ∈
T } be the right-continuous, P -completed, natural filtration generated by the
process Y := {Y (t) | t ∈ T }. Denote the enlarged filtration by F := {Ft | t ∈
T }, where for each t ∈ T , Ft = FY

t ∨ FX
t , be the minimal σ-field containing

FY
t and FX

t .

Lemma 3.3. Let G̃(y) = (G̃1(y), . . . , G̃N (y))∗, where y satisfies G̃j(y) < ∞
and

G̃j(y) = µj +
σ2
j

2
+ λj(

m∑
l=1

λlj

λj

∫ ∞
0

eyzf lj(z)dz − 1).

Then for t > s ≥ 0,

E
[
eyY (t)|Fs

]
= eyY (s)〈exp{(diag(G̃(y)) +A)(t− s)}1, Xs〉,

where 1 = (1, . . . , 1)∗.
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Proof. Conditional on the path of the Markov chain,

E
[
eyY (t)|Fs

]
= eyY (s)E

[
E
[
ey(Y (t)−Y (s))|FX

t ∨ Fs
]
|Fs
]

= eyY (s)E
[
e
∫ t
s
〈G(y),X(u)〉du|Fs

]
.

Then from Lemma A.1 of Buffington and Elliott [4] we can obtain the result. �

From (2.1), the default time can be rewritten as

τ = inf{t ≥ 0 : u+ Y (t) ≤ 0},

where u = ln ( A0

γL0
) > 0. For δ > 0 and each i = 1, . . . , N , define

Ξi(u, δ, η,θ) = E
[
e−δτ+η(u+Y (τ))θ(Xτ )1{τ<∞}|X0 = ei, u+ Y (0) = u

]
,

where η satisfies E
[
eηY (τ)|X0 = ei, Y (0) = 0

]
< ∞, and θ(Xt) = 〈θ, Xt〉 with

θ = (θ1, . . . , θN )∗. To simplify the notation, we drop δ, η,θ in the parameters.
Note that, if θ = (1, . . . , 1)∗, then

Ξi(u, δ, η,θ) = E
[
e−δτ+η(u+Y (τ))1{τ<∞}|X0 = ei, u+ Y (0) = u

]
is the joint Laplace transform of τ and Y (τ). Xu et al. [20] derive the integro-
differential equations satisfied by the joint Laplace transform. In this paper, we
can use the same arguments as in Xu et al. [20] to derive the integro-differential
equations for Ξi(u)’s.

Theorem 3.4. Let u > 0. Then, Ξi(u)’s satisfy the integro-differential system

(δ − aii + λi)Ξi(u)− µiΞ
′

i(u)− σ2
i

2
Ξ

′′

i (u)− λi
∫ −u
−∞

θie
η(u+x)fi(x)dx

− λi
∫ ∞
−u

Ξi(u+ x)fi(x)dx =

N∑
j=1,j 6=i

aijΞj(u),(3.6)

with boundary conditions:

(3.7) Ξi(u) = θie
ηu, i = 1, 2, . . . , N, u ≤ 0.

Proof. The proof is similar to that of Theorem 3.1 in Xu et al. [20], so we omit
it. �

Remark 3.5. Extending Siu et al. [6] and Kijima and Siu [16], we can obtain the
joint Laplace transform under a regime-switching jump-diffusion process with
a general jump size distribution by solving the boundary value problems (3.6)
and (3.7) analytically or numerically. In particular, when the jumps follow
a regime-switching exponential type distribution, we can derive the explicit
formula.
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4. Solution approach

In this section, we suppose that the Markov chain X only have two states,
that is, N = 2. Suppose that state e1 (state e2) represents a “bad” (“good”)
economic state. The intensity matrix is given by

A =

(
a11 a12
a21 a22

)
,

where a11 = −a12 < 0, a22 = −a21 < 0. Furthermore, for each l = 1, . . . ,m, j =
1, 2, we assume that

(4.1) f lj(y) =
1

2
αl,je

−αl,jy1{y≥0} +
1

2
βl,je

βl,jy1{y<0},

where 1 < αl,1 < αl,2, 0 < βl,1 < βl,2, for l = 1, . . . ,m. The condition
αl,1 < αl,2, βl,1 < βl,2 holds due to the fact that the expectation of the jump
size corresponding to the “bad” economic state should be greater than that
corresponding to the “good” economic state. αl,1 > 1 guarantees that the vec-
tor µ in (3.5) is well-defined. For simplicity, we only consider the case when
all αi,j ’s are distinct and all βi,j ’s are also distinct since the analysis of the
other case is more tedious, which will be further illustrated in the derivation
of explicit formulas for Ξi(u) below. Without loss of generality, we assume
αi,1 < αi,2 < αi+1,1 < αi+1,2, βi,1 < βi,2 < βi+1,1 < βi+1,2, i = 1, 2, . . . ,m− 1.

From Lemma 3.1, we have, for each j = 1, 2,

(4.2) fj(y) =

m∑
l=1

pljαl,je
−αl,jy1{y>0} +

m∑
l=1

qljβl,je
βl,jy1{y<0},

where plj = qlj = λlj

2λj
> 0.

Then from Theorem 3.4, we can directly obtain the following result.

Corollary 4.1. Let u > 0. Then, Ξi(u)’s satisfy the integro-differential system

(δ − a11 + λ1)Ξ1(u)− µ1Ξ
′

1(u)− σ2
1

2
Ξ

′′

1 (u)− λ1
∫ −u
−∞

θ1e
η(u+x)f1(x)dx

− λ1
∫ ∞
−u

Ξ1(u+ x)f1(x)dx = −a11Ξ2(u)(4.3)

and

(δ − a22 + λ2)Ξ2(u)− µ2Ξ
′

2(u)− σ2
2

2
Ξ

′′

2 (u)− λ2
∫ −u
−∞

θ2e
η(u+x)f2(x)dx

− λ2
∫ ∞
−u

Ξ2(u+ x)f2(x)dx = −a22Ξ1(u).(4.4)

Let I and D denote the identity operator and the differential operator, re-
spectively. Define the differential operator polynomials

hi(D) =
1

2
σ2
iD

2 + µiD− (δ − aii + λi)I.
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Inserting (4.1) into (4.3) and (4.4) gives

h1(D)Ξ1(u) = − λ1
( m∑
i=1

qi1θ1βi,1
βi,1 + η

e−βi,1u +

∫ u

0

Ξ1(s)

m∑
i=1

qi1βi,1e
βi,1(s−u)ds

+

∫ ∞
u

Ξ1(s)

m∑
i=1

pi1αi,1e
−αi,1(s−u)ds

)
+ a11Ξ2(u),(4.5)

and

h2(D)Ξ2(u) = − λ2
( m∑
i=1

qi2θ2βi,2
βi,2 + η

e−βi,2u +

∫ u

0

Ξ2(s)

m∑
i=1

qi2βi,2e
βi,2(s−u)ds

+

∫ ∞
u

Ξ2(s)

m∑
i=1

pi2αi,2e
−αi,2(s−u)ds

)
+ a22Ξ1(u).(4.6)

When m = 2, θi = 1 and βi,j = αi,j for i, j = 1, 2, Xu et al. [20] have explicitly
solved (4.5)-(4.6). Although the hyper-exponential distribution we consider in
this paper may be asymmetric, for any m ≥ 1 and any constants θi, we can
use a similar procedure as in Xu et al. [20] (see the appendix) to obtain that
the characteristic equation for solving (4.5)-(4.6) can be written as

(4.7) h̃1(x)h̃2(x) = a11a22

2∏
j=1

m∏
i=1

(x+ βi,j)(x− αi,j).

Define

ĥj(x) =
σ2
j

2
x2 + µjx+ λj(

m∑
i=1

pijαi,j
αi,j − x

+

m∑
i=1

qijβi,j
βi,j + x

)− (δ − ajj + λj).

Then (4.7) can be written as

(4.8) ĥ1(x)ĥ2(x) = a11a22.

In order to derive the solution for Ξi(u), it remains to investigate the roots of
the equation (4.8). Dong et al. [8] have proved that the equation

ĥj(x) = 0

has 2m+ 2 roots, x1,j , . . . , xm+1,j , y1,j , . . . , ym+1,j , satisfying

−∞ < ym+1,j < −βm,j < ym+1,j < −βm−1,j < ym,j < · · ·
< −β1,j < y1,j < 0 < x1,j < α1,j < · · · < αm,j < xm+1,j <∞.

Lemma 4.2. For δ > 0, the equation (4.8) has 2m + 2 distinct positive real
roots, and 2m+ 2 distinct negative real roots.

Proof. Let

h(x) = ĥ1(x)ĥ2(x)− a11a22.
Note that

h(0) = (δ − a11 + λ1)(δ − a22 + λ2)− a11a22 > 0,
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h(xi,j) = h(yi,j) = −a11a22 < 0, h(−∞) = +∞, h(+∞) = +∞,
h(αi,j−)h(αi,j+) = −∞, h(−βi,j−)h(βi,j+) = −∞.

Furthermore, we have (see Figure 1)

Figure 1. the roots of Eq. (4.8)

−∞ < ym+1,2 < ym+1,1 < −βm,2 < · · · < −β1,2 < y1,2 < −β1,1 < y1,1

< 0 < x1,1 < α1,1 < x1,2 < α1,2 < · · · < αm,2 < xm+1,1 < xm+1,2 < +∞.

Under the given assumption, we observe that

h(αi,j−) = −∞, h(αi,j+) = +∞, h(−βi,j−) = +∞, h(−βi,j+) = −∞.

Hence, there exists at least one root at each of the 4m+ 4 intervals,

(−∞, ym+1,2), . . . , (yi+1,1,−βi,2), (yi,2,−βi,1), . . . , (−y1,1, 0),

(0, x1,1), . . . , (αi,1, xi,2), (αi,2, xi+1,1), . . . , (xm+1,2,+∞),

for i = 1, . . . ,m. Since h(x) is a polynomial of degree 4m + 4, there exists
exactly one root at each of the above intervals, which concludes the result. �

Remark 4.3. If all αi,j ’s are not distinct or all βi,j ’s are not distinct, then
the equation (4.8) may have complex roots or multiple roots, which makes the
following analysis much more tedious but does not bring any essential extension
of mathematics.

Theorem 4.4. For any δ > 0, 0 < η < α11, we have

(4.9) Ξ1(u) =


2m+2∑
j=1

cje
ρju, u > 0,

θ1e
ηu, u ≤ 0,
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and

(4.10) Ξ2(u) =


2m+2∑
j=1

dje
ρju, u > 0,

θ2e
ηu, u ≤ 0,

where ρ1, . . . , ρ2m+2 are 2m + 2 distinct negative real roots of the Eq. (4.8),
c1, . . . , c2m+2 are determined by the following linear system

(c1, . . . , c2m+2)H∗

=

(
1, a11,

θ1β1,1
β1,1 + η

, . . . ,
θ1βm,1
βm,1 + η

,
a11θ2β1,2
β1,2 + η

, . . . ,
a11θ2βm,2
βm,2 + η

)
,(4.11)

d1, . . . , d2m+2 are determined by the following linear system

(d1, . . . , d2m+2)G∗

=

(
1, a22,

θ2β1,2
β1,2 + η

, . . . ,
θ2βm,2
βm,2 + η

,
θ1a22β1,1
β1,1 + η

, . . . ,
θ1a22βm,1
βm,1 + η

)
,(4.12)

with

H =



1 1 · · · 1

ĥ1(ρ1) ĥ1(ρ2) · · · ĥ1(ρ2m+2)
β1,1

β1,1+ρ1

β1,1

β1,1+ρ2
· · · β1,1

β1,1+ρ2m+2

· · · · · · · · · · · ·
βi,1

βi,1+ρ1

βi,1

βi,1+ρ2
· · · βi,1

βi,1+ρ2m+2

· · · · · · · · · · · ·
βm,1

βm,1+ρ1

βm,1

βm,1+ρ2
· · · βm,1

βm,1+ρ2m+2

β1,2ĥ1(ρ1)
β1,2+ρ1

β1,2ĥ1(ρ2)
β1,2+ρ2

· · · β1,2ĥ1(ρ2m+2)
β1,2+ρ2m+2

· · · · · · · · · · · ·
βi,2ĥ1(ρ1)
βi,2+ρ1

βi,2ĥ1(ρ2)
βi,2+ρ2

· · · βi,2ĥ1(ρ2m+2)
βi,2+ρ2m+2

· · · · · · · · · · · ·
βm,2ĥ1(ρ1)
βm,2+ρ1

βm,2ĥ1(ρ2)
βm,2+ρ2

· · · βm,2ĥ1(ρ2m+2)
βm,2+ρ2m+2



,
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and

G =



1 1 · · · 1

ĥ2(ρ1) ĥ2(ρ2) · · · ĥ2(ρ2m+2)
β1,2

β1,2+ρ1

β1,2

β1,2+ρ2
· · · β1,2

β1,2+ρ2m+2

· · · · · · · · · · · ·
βi,2

βi,2+ρ1

βi,2

βi,2+ρ2
· · · βi,2

βi,2+ρ2m+2

· · · · · · · · · · · ·
βm,2

βm,2+ρ1

βm,2

βm,2+ρ2
· · · βm,2

βm,2+ρ2m+2

β1,1ĥ2(ρ1)
β1,1+ρ1

β1,1ĥ2(ρ2)
β1,1+ρ2

· · · β1,1ĥ2(ρ2m+2)
β1,1+ρ2m+2

· · · · · · · · · · · ·
βi,1ĥ2(ρ1)
βi,1+ρ1

βi,1ĥ2(ρ2)
βi,1+ρ2

· · · βi,1ĥ2(ρ2m+2)
βi,1+ρ2m+2

· · · · · · · · · · · ·
βm,1ĥ2(ρ1)
βm,1+ρ1

βm,1ĥ2(ρ2)
βm,1+ρ2

· · · βm,1ĥ2(ρ2m+2)
βm,1+ρ2m+2



.

Proof. Note that lim
u→+∞

Ξ1(u) = 0. Then the Laplace transforms Ξ1(u) and

Ξ2(u) have the forms

Ξ1(u) =

2m+2∑
j=1

cje
ρju, Ξ2(u) =

2m+2∑
j=1

dje
ρju, u > 0,

where cj ’s, dj ’s are undetermined constants. It is easy to see that to determine
c1, . . . , c2m+2, 2m + 2 equations are required. The smooth pasting condition
implies that

(4.13)

2m+2∑
j=1

cj = 1.

To derive other 2m+1 equations, we substituting Ξ1(u) =
∑2m+2
j=1 cje

ρju, u > 0

into (4.3) and obtain

a11Ξ2(u) =

2m+2∑
j=1

cje
ρjuĥ1(ρj)

+ λ1

2m+2∑
i=1

qi1e
−βi,1u

 θ1βi,1
βi,1 + η

−
2m+2∑
j=1

cjβi,1
βi,1 + ρj

 .(4.14)

Inserting Eq. (4.14) into Eq. (4.6) and equating the coefficients of e−βi,ju,
i = 1, 2, . . . ,m, j = 1, 2, yield

a11θ2βi,2

βi,2+η
−

2m+2∑
j=1

cjβi,2ĥ1(ρj)
βi,2+ρj

−
2m+2∑
l=1

λ1βi,2ql1
βi,2−βl1

(
θ1βl1

βl1+η
−

2m+2∑
j=1

cjβl1

βl1+ρj

)
= 0,(

θ1βi,1

βi,1+η
−

2m+2∑
j=1

cjβi,1

βi,1+ρj

)
ĥ2(−βi,1) = 0,
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Note that ĥ2(−βi,1) 6= 0. Therefore, we obtain that

(4.15)

2m+2∑
j=1

cjβi,1
βi,1 + ρj

=
θ1βi,1
βi,1 + η

, i = 1, . . . ,m,

and

(4.16)

2m+2∑
j=1

cjβi,2ĥ1(ρj)

βi,2 + ρj
=
a11θ2βi,2
βi,2 + η

, i = 1, . . . ,m.

Furthermore, letting u = 0 in Eq. (4.14) and using Eq. (4.15), with the bound-
ary condition Ξ2(0) = 1 yield that and

(4.17)

2m+2∑
j=1

cj ĥ1(ρj) = a11.

Combining (4.15)-(4.17) yields (4.9) and (4.11).
The proof for (4.10) and (4.12) is similar, so we omit it here. �

From Theorem 4.4, we can directly obtain the following result.

Corollary 4.5. For any δ > 0, 0 < η < α11, we have

(4.18) E
[
e−δτ+η(u+Y (τ))θ(Xτ )|u+ Y (0) = u

]
= 〈ϑ(u, δ, η,θ), X0〉,

where

ϑ(u, δ, η,θ) = (Ξ1(u, δ, η,θ),Ξ2(u, δ, η,θ))
∗

=

(
2m+2∑
i=1

cie
ρiu,

2m+2∑
i=1

die
ρiu

)∗
,(4.19)

with cj’s, dj’s given by (4.11) and (4.12), respectively.

Now, we are prepared to price the participating insurance contract. Using
the standard machinery of arbitrage theory, the arbitrage free price of the life
insurance contract VL(0) is given by:

VL(0)=E
[
e−rT (LgT +β(αAT − LgT )+−(LgT −AT )+)1{τ≥T}+e

−rτAτ1{τ≤T}
]
.

This contract can be split up into four simpler subcontracts:

VL(0) = V1 + V2 + V3 + V4,

where
V1 = L0e

−(r−rg)TE
[
1{τ≥T}

] .
= L0e

−(r−rg)TGF (T ),
V2 = βe−rTE

[
(αAT − LgT )+1{τ≥T}

] .
= βe−(r−rg)TBO(T, k),

V3 = E
[
e−rT (LgT −AT )+1{τ≥T}

] .
= e−(r−rg)TPO(T, k′),

V4 = E
[
e−rτAτ1{τ≤T}

] .
= LR(T ),
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with 
GF (T ) = E

[
1{τ≥T}

]
,

BO(T, k) = E
[
(αAT e

−rgT − e−k)+1{τ≥T}
]
, k = − log(L0),

PO(T, k′) = E
[
(ek

′ −AT e−rgT )+1{τ≥T}

]
, k′ = log(L0).

Here V1 stands for the final guarantee, V2 corresponds to the bonus option, V3
stands for the put option, and V4 is the rebate paid to policyholders in case of
default.

Note that, there are no exact results for the price of the participating con-
tract. However, the price is associated with some integral transforms of GF (T ),
BO(T, k), PO(T, k′) and LR(T ). Numerical algorithms, such as, Laplace in-
version, fast Fourier transform, are widely used to numerically evaluate some
financial products, see Dong [8], Siu et al. [6] and Carr and Madan [5]. We
aim at providing a pricing model in this paper and therefore we only focus on
deriving the price by using Laplace inversion.

Theorem 4.6. For δ > 0, the Laplace transform with respect to T of GF (T )
is:

(4.20) L̂1(δ) =

∫ ∞
0

e−δTGF (T )dT =
1− 〈ϑ(u, δ, 0,1), X0〉

δ
,

where ϑ(u, δ, 0,1) is defined by (4.19) with η,θ replaced by 0 and 1, respectively.

Proof. Applying the Fubini theorem yields that

L̂1(δ) = E

[∫ τ

0

e−δT dT

]
=

1− E
[
e−δτ

]
δ

,

then the result can be obtained from (4.18) by letting η = 0 and θ = (1, . . . , 1)∗.
�

Theorem 4.7. For δ > 0, the Laplace transform with respect to T of LR(T )
is:

(4.21) L̂2(δ) =

∫ ∞
0

e−δTLR(T )dT =
A0e

−u〈ϑ(u, δ + r − rg, 1,1), X0〉
δ

,

where ϑ(u, δ+ r− rg, 1,1) is defined by (4.18) with δ, η,θ replaced by δ+ r− rg,
1 and 1, respectively.

Proof. Applying the Fubini theorem yields that

L̂2(δ)=E

[∫ ∞
τ

e−δT−rτAτdT

]
=
E
[
Aτe

−(δ+r)τ ]
δ

=
E
[
A0e

−(δ+r−rg)τ+Y (τ)
]

δ
.

Then by using (4.18), we can obtain the result. �



FIRST PASSAGE TIME UNDER A REGIME-SWITCHING 1369

Theorem 4.8. Let p = (p1, . . . , pN )∗ where pi =
∫∞
0
e−δt〈exp{(diag(G̃(η +

1)) +A)t}1, ei〉dt with 0 < η < α1,1− 1 and δ > 0 satisfying pi <∞. Then the
Laplace transform with respect to T and k of BO(T, k) is:

L̂3(δ, η) =

∫ ∞
0

∫ ∞
−∞

e−δT−ηkBO(T, k)dTdk

=
(αA0)η+1

η(η + 1)
〈p− e−(η+1)uϑ(u, δ, η + 1,p), X0〉,(4.22)

where ϑ(u, δ, η + 1,p) is defined by (4.18) with η,θ replaced by η + 1 and p,
respectively.

Proof. By Fubini theorem,

L̂3(δ, η) = E

[∫ ∞
0

∫ ∞
rgT−log(αAT )

e−δT−ηk1{τ≥T}(αAT e
−rgT − e−k)dkdT

]

= E

[∫ ∞
0

(αA0)η+11{τ≥T}
e−δT+(η+1)Y (T )

η(η + 1)
dT

]
=

(αA0)η+1

η(η + 1)

(
〈p, X0〉 − E

[∫ ∞
0

e−δ(t+τ)+(η+1)Y (t+τ)dt

])
,

where the last equality follows from Lemma 3.3. The strong Markov property
of Y implies that

E

[∫ ∞
0

e−δ(t+τ)+(η+1)Y (t+τ)dt

]
= E

[
e−δτ+(η+1)Y (τ)

∫ ∞
0

e−δtE
[
e(η+1)(Y (t+τ)−Y (τ))|Fτ

]
dt

]
= e−(η+1)uE

[
e−δτ+(η+1)(u+Y (τ))〈p, Xτ 〉

]
= e−(η+1)u〈ϑ(u, δ, η + 1,p), X0〉,

which concludes the result. �

Theorem 4.9. Let q = (q1, . . . , qN )∗ where qi =
∫∞
0
e−δt〈exp{(diag(G̃(1 −

η)) + A)t}1, ei〉dt with 0 < η < max{α1,1 − 1, 1} and δ > 0 satisfying qi <∞.
Then the Laplace transform with respect to T and k of PO(T, k′) is:

L̂4(δ, η) =

∫ ∞
0

∫ ∞
−∞

e−δT−ηk
′
PO(T, k′)dTdk′

=
A1−η

0

η(η − 1)
〈q− e(η−1)uϑ(u, δ, 1− η,q), X0〉,(4.23)

where ϑ(u, δ, 1 − η,q) is defined by (4.18) with η,θ replaced by 1 − η and q,
respectively.
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Proof. By Fubini theorem,

L̂4(δ, η) = E

[∫ ∞
0

∫ ∞
log(AT )−rgT

e−δT−ηk
′
1{τ≥T}(e

k′ −AT e−rgT )dkdT

]

= E

[∫ ∞
0

A1−η
0 1{τ≥T}

e−δT−(η−1)Y (T )

η(η − 1)
dT

]
=

A1−η
0

η(η − 1)

(
〈q, X0〉 − E

[∫ ∞
0

e−δ(t+τ)−(η−1)Y (t+τ)dt

])
.

The strong Markov property of Y implies that

E

[∫ ∞
0

e−δ(t+τ)−(η−1)Y (t+τ)dt

]
= E

[
e−δτ−(η−1)Y (τ)

∫ ∞
0

e−δtE
[
e−(η−1)(Y (t+τ)−Y (τ))|Fτ

]
dt

]
= e(η−1)uE

[
e−δτ−(η−1)(u+Y (τ))〈q, Xτ 〉

]
= e(η−1)u〈ϑ(u, δ, 1− η,q), X0〉,

which yields the result. �

By inverting the Laplace transforms, we can obtain the price of participating
contract numerically.

5. Numerical examples

In this section, we intend to price the participating life insurance contract
by numerically inverting the associated Laplace transforms (4.20)-(4.23). Since
the impacts of the parameters on the price of the participating life insurance
contract have been investigated in a lot of literature, we only check whether
changes of market regimes significantly impact the price of the participating
life insurance contract.

In (4.20) and (4.21), the Laplace transforms of GF (T ) and LR(T ) with
respect to T are one-sided, so we can obtain numerical results for GF (T ) and
LR(T ) by inverting (4.20) and (4.21) via the Gaver-Stehfest algorithm, which
is used in Kou and Wang (2003) and Dong et al. [10]. For the details of the
implementation of the Gaver-Stehfest algorithm, we refer to Section 5 in Kou
and Wang (2003) or Section 4 in Dong et al. [10]. In (4.22) and (4.23), the
Laplace transforms with respect to k or k′ are two-sided, so we invert (4.22)
and (4.23) via the Euler inversion algorithm, which is introduced by Abate and
Whitt [1] and later extended to the two-sided case by Petrella [17]. Parameters
for the Euler inversion algorithm (see Eq. (5) in Petrella [17]) are A1 = A2 = 40,
which are used in Petrella [17]. All the computations are done on a laptop with
a 3.00 GHz CPU.

For all the computations, the values of certain parameters are held fixed
except otherwise indicated: we take T = 10, A0 = 100, K0 = 70, a11 = a22 =
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−0.1, r = 0.03, rg = 0.02, m = 2, σ1 = 0.6, σ2 = 0.3, λ11 = λ21 = 2, λ12 =
λ22 = 1, α1,1 = β1,1 = 25, α1,2 = β1,2 = 50, α2,1 = β2,1 = 30, α2,2 = β2,2 = 60,
α = 0.85, γ = 0.7, β = 0.9.

Figure 2 presents the relationship between the default probability and t for
different γ. From it we can see that the default probability is much larger if
we start at the “bad” economy at time t = 0. We can also see that the default
probability increases with γ. That is because the firm is more likely to default
with a higher default barrier.

Figure 3 plots default probability versus −a11 with a11 = a22 for different α.
From it we can conclude that a higher a12 results in a lower default probability
if we start at the “bad” economy at time t = 0 (X0 = e1). This is due to
the fact that the probability that the Markov chain switches to the “good”
economy increases with a12. On the other hand, if we start at X0 = e2, the
default probability increases with a12 because of an increasing probability of
switching to the “bad” economy. We can also see that the default probability
increases with α. That is because a larger value of α implies a larger value of
L0 and a higher default barrier.
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versus t
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Figure 3. P (τ ≤ t)
versus −a11

Figure 4 presents the relationship between the contract value and the jump
intensity λ21 with λ21 = λ11, λ12 = λ22 = 1/2λ21. From it we can see that the
contract value is much larger if we start at the “good” economy. We can also
see that the general shape of the curves is similar to the plots in Le Courtois
and Quittard-Pinon [7] and we can find the existence of optima of the jump
intensity where the contract value is maximized.

Figure 5 plots the impact of transition intensity on the contract value. From
it we can conclude that the contract value is an increasing function of a12 if
we start at the “bad” economy. This is because a higher a12 results in an
increasing probability of switching to the “good” economy. On the other hand,
if we start at the “good” economy, the contract value decreases with a12. This
is due to an increasing probability of switching to the “bad” economy. Note
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that when a12 → 0, then the regime-switching model becomes a model without
regime-switching. Therefore, from Figure 5 we see that if we do not incorporate
regime-switching into the model and assume the economy is always in a good
state, then the contract will be overpriced; if we assume the economy is always
in a bad state, then the contract will be underpriced.

To sum up, numerical results indicate that changes of market regimes have
material effects on the default probability and the contract value.

6. Conclusions

In this paper, we investigate the valuation of participating contracts under
a regime-switching jump-diffusion model. Since the Laplace transform for the
price of the participating contract is associated with the Laplace transform of
the first passage time, the firm’s expected present market value at default and
the distribution of the Markov chain at default, we derive integro-differential
system for the joint Laplace transform of the default time, the firm’s expected
present market value at default and the distribution of Markov chain at de-
fault when the jumps follow a regime-switching hyper-exponential distribution.
Based on the result, we give numerical calculations for the value of the partic-
ipating contract by inverting one-sided and two-sided Laplace transforms via
Gaver-Stehfest algorithm and Euler algorithm, respectively. Numerical results
illustrate the regime-switching effects have a significant impact on the value of
participating contracts. Therefore, we should incorporate changes of market
regimes into models for pricing long term insurance products.

The present work might be extended by incorporating the mortality risk into
the model. Then the valuation of the participating will be much more complex
since the price will be dependent on the joint distribution of the date of death
and the default time. We will study it in the future’s research.
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Appendix A. The derivation of the characteristic equation (4.7)

Similar to Dong et al. (2011), applying the differential operator polynomials
m∏
i=1

(D + βi,1I)(D − αi,1I) and
m∏
i=1

(D + βi,2I)(D − αi,2I) to the both sides of

(4.5) and (4.6), respectively,

m∏
i=1

[(D + βi,1I)(D− αi,1I)]h1(D)Ξ1(u)

= λ1

m∑
i=1

pi1αi,1

(D + βi,1I)

m∏
j=1,j 6=i

[(D + βj,1I)(D− αj,1I)]

Ξ1(u)

− λ1
m∑
i=1

qi1βi,1

(D− βi,1I)
m∏

j=1,j 6=i

[(D + βj,1I)(D− αj,1I)]

Ξ1(u)

+ a11

m∏
i=1

[(D + βi,1I)(D− αi,1I)] Ξ2(u),(A.1)

and

m∏
i=1

[(D + βi,2I)(D− αi,2I)]h2(D)Ξ2(u)

= λ2

m∑
i=1

pi2αi,2

(D + βi,2I)

m∏
j=1,j 6=i

[(D + βj,2I)(D− αj,2I)]

Ξ2(u)

− λ2
m∑
i=1

qi2βi,2

(D− βi,2I)
m∏

j=1,j 6=i

[(D + βj,2I)(D− αj,2I)]

Ξ2(u)

+ a22

m∏
i=1

[(D + βi,2I)(D− αi,2I)] Ξ1(u).(A.2)

Define operators

h̃j(D) =

m∏
i=1

[(D + βi,jI)(D− αi,jI)]hj(D)

− λj
( m∑
i=1

pijαi,j((D + βi,jI)

m∏
l=1,l 6=i

[(D + βl,jI)(D− αl,jI)])

−
m∑
i=1

qijβi,j
(
(D− αi,jI)

m∏
l=1,l 6=i

[(D + βl,jI)(D− αl,jI)]
))
, j = 1, 2.
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Similarly, we define

h̃j(x) =

m∏
i=1

(x+ βi,j)(x− αi,j)hj(x)

− λj
( m∑
i=1

pijαi,j
(
(x+ βi,j)

m∏
l=1,l 6=i

[(x+ βl,j)(x− αl,j)]
)

−
m∑
i=1

qijβi,j
(
(x− αi,j)

m∏
l=1,l 6=i

[(x+ βl,j)(x− αl,j)]
))
, j = 1, 2,

where hi(x) = 1
2σ

2
i x

2 + µix− (δ − aii + λi).

By using h̃i(D), Eqs. (A.1) and (A.2) become

(A.3) h̃1(D)Ξ1(u) = −a12
m∏
i=1

(D + βi,1I)(D− αi,1I)Ξ2(u),

and

(A.4) h̃2(D)Ξ2(u) = −a21
m∏
i=1

(D + βi,2I)(D− αi,2I)Ξ1(u).

Then it follows from (A.3) and (A.4) that

(A.5) h̃2(D)h̃1(D)Ξ1(u) = a11a22

2∏
j=1

m∏
i=1

(D + βi,jI)(D− αi,jI)Ξ1(u),

and

(A.6) h̃1(D)h̃2(D)Ξ2(u) = a11a22

2∏
j=1

m∏
i=1

(D + βi,jI)(D− αi,jI)Ξ2(u).

Therefore, the characteristic equation of (A.5)-(A.6) is given by (4.7).
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Math. Econom. 72 (2017), 138–147. https://doi.org/10.1016/j.insmatheco.2016.11.
009

[15] Z. Jin, L. Y. Qian, W. Wang, and R. M. Wang, Pricing dynamic fund protections with

regime switching, J. Comput. Appl. Math. 297 (2016), 13–25. https://doi.org/10.

1016/j.cam.2015.11.012

[16] M. Kijima and C. C. Siu, On the first passage time under regime-switching with jumps,

in Inspired by finance, 387–410, Springer, Cham, 2014. https://doi.org/10.1007/978-
3-319-02069-3_18

[17] G. Petrella, An extension of the Euler Laplace transform inversion algorithm with

applications in option pricing, Oper. Res. Lett. 32 (2004), no. 4, 380–389. https:

//doi.org/10.1016/j.orl.2003.06.004

[18] T. K. Siu, Fair valuation of participating policies with surrender options and regime
switching, Insurance Math. Econom. 37 (2005), no. 3, 533–552. https://doi.org/10.

1016/j.insmatheco.2005.05.007

[19] T. K. Siu, J. W. Lau, and H. Yang, Pricing participating products under a generalized
jump-diffusion model, J. Appl. Math. Stoch. Anal. 2008 (2008), Art. ID 474623, 30 pp.

https://doi.org/10.1155/2008/474623

[20] C. Xu, Y. Dong, and G. Wang, The pricing of defaultable bonds under a regime-switching
jump-diffusion model with stochastic default barrier, Comm. Statist. Theory Methods

48 (2019), no. 9, 2185–2205. https://doi.org/10.1080/03610926.2018.1459715

Yinghui Dong
Department of Mathematics and Physics
Suzhou University of Science and Technology

Suzhou 215009, P. R. China
Email address: dongyinghui1030@163.com

https://doi.org/10.1017/asb.2014.32
https://doi.org/10.1017/asb.2014.32
https://doi.org/10.1007/s10203-007-0079-3
https://doi.org/10.1007/s10203-007-0079-3
https://doi.org/10.1080/03610926.2011.639976
https://doi.org/10.1239/jap/1308662635
https://doi.org/10.1093/imaman/dpx004
https://doi.org/10.1093/imaman/dpw014
https://doi.org/10.1093/imaman/dpw014
https://doi.org/10.1016/j.insmatheco.2016.11.009
https://doi.org/10.1016/j.insmatheco.2016.11.009
https://doi.org/10.1016/j.cam.2015.11.012
https://doi.org/10.1016/j.cam.2015.11.012
https://doi.org/10.1007/978-3-319-02069-3_18
https://doi.org/10.1007/978-3-319-02069-3_18
https://doi.org/10.1016/j.orl.2003.06.004
https://doi.org/10.1016/j.orl.2003.06.004
https://doi.org/10.1016/j.insmatheco.2005.05.007
https://doi.org/10.1016/j.insmatheco.2005.05.007
https://doi.org/10.1155/2008/474623
https://doi.org/10.1080/03610926.2018.1459715


1376 Y. H. DONG, W. X. LV, AND S. WU

Wenxin Lv

Department of Mathematics and Physics

Suzhou University of Science and Technology
Suzhou 215009, P. R. China

Email address: 15136627969@163.com

Sang Wu

Department of Mathematics and Physics

Suzhou University of Science and Technology
Suzhou 215009, P. R. China

Email address: 15715848990@163.com


