• Title/Summary/Keyword: iterative methodology

Search Result 94, Processing Time 0.029 seconds

Case Studies and Future Direction in Systems Engineering Educational Program (시스템 엔지니어링 교육의 사례연구와 미래 발전방안)

  • Lee, Jae-Ryul;Park, Young-Won
    • Journal of Engineering Education Research
    • /
    • v.9 no.2
    • /
    • pp.52-70
    • /
    • 2006
  • Systems Engineering(SE), as a special discipline evolved from multidisciplinary and interdisciplinary design knowledges and practical lessons learned from development practices, is required to develop today's ever-growing large complex systems. As computer speed and analytic sophistication accelerate their applications, modern society's needs have become increasingly varied and complex. Rapid advances in Systems Engineering and its education programs among the developed countries demonstrate their needs as an alternative to what is lacking from traditional disciplinary engineering to meet new challenges of our changing social environments. Systems Engineering is an interdisciplinary approach that includes both management and technical processes. Its processes, methods, and tools are used to evolve, define, and verify an integrated, life-cycle balanced set of system solution that satisfy customer needs and requirements. The process methodology offers a top-down comprehensive, iterative and recursive problem solving process which includes the stating the problems, investigating the alternatives, architecting and modeling the system, integrating and operating the system, assessing and re-evaluating the system performances. The purpose of this paper is to research the cases of SE educational programs for both domestic and other developed countries and to propose recommendations for the domestic SE educational programs in the future.

A Study of Requirements Elicitation and Specification for Context-Aware Systems (컨텍스트 인지 시스템을 위한 요구사항 도출 및 명세화 방법)

  • Choi, Jong-Myung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.8
    • /
    • pp.394-406
    • /
    • 2008
  • Even though context is the most important feature in context-aware systems, the existing requirements engineering cannot support methodology for elicitation and specification of contexts. In this paper, we propose a requirements elicitation method and a requirements specification method for context-aware systems. Our requirements elicitation method is a 6-stepped, incremental, and iterative process. At the beginning steps in the process, we identify the requirements for business logic. Afterwards, we gather the requirements for context logic, model contexts, and identify subsystems. For requirements specification, we suggest a context-aware use case diagram, a context diagram for context modeling, and a context-type-use-case-dependency diagram for the traceability of use cases on the change of context types. We also introduce a case study that we apply our approaches to a real system, and a qualitative evaluation of our approaches. Our study will help stakeholders to efficiently elicit requirements for context-aware systems and to specify them clearly.

Analysis of Land Uses in the Nakdong River Floodplain Using RapidEye Imagery and LiDAR DEM (RapidEye 영상과 LiDAR DEM을 이용한 낙동강 범람원 내 토지 이용 현황 분석)

  • Choung, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.189-199
    • /
    • 2014
  • Floodplain is a flat plain between levees and rivers. This paper suggests a methodology for analyzing the land uses in the Nakdong River floodplain using the RapidEye imagery and the given LiDAR(LIght Detection And Ranging) DEM(Digital Elevation Models). First, the levee boundaries are generated using the LiDAR DEM, and the area of the floodplain is extracted from the given RapidEye imagery. The land uses in the floodplain are identified in the extracted RapidEye imagery by the ISODATA(Iterative Self-Organizing Data Analysis Technique Analysis) clustering. The overall accuracy of the identified land uses by the ISODATA clustering is 91%. Analysis of the identified land uses in the floodplain is implemented by counting the number of the pixels constituting the land cover clusters. The results of this research shows that the area of the river occupies 46%, the area of the bare soil occupies 36%, the area of the marsh occupies 11%, and the area of the grass occupies 7% in the identified floodplain.

A High-Speed Hardware Design of IDEA Cipher Algorithm by Applying of Fermat′s Theorem (Fermat의 소정리를 응용한 IDEA 암호 알고리즘의 고속 하드웨어 설계)

  • Choi, Young-Min;Kwon, Yong-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.6
    • /
    • pp.696-702
    • /
    • 2001
  • In this paper, we design IDEA cipher algorithm which is cryptographically superior to DES. To improve the encryption throughput, we propose an efficient design methodology for high-speed implementation of multiplicative inverse modulo $2^{15}$+1 which requires the most computing powers in IDEA. The efficient hardware architecture for the multiplicative inverse in derived from applying of Fermat's Theorem. The computing powers for multiplicative inverse in our proposal is a decrease 50% compared with the existing method based on Extended Euclid Algorithm. We implement IDEA by applying a single iterative round method and our proposal for multiplicative inverse. With a system clock frequency 20MGz, the designed hardware permits a data conversion rate of more than 116 Mbit/s. This result show that the designed device operates about 2 times than the result of the paper by H. Bonnenberg et al. From a speed point of view, out proposal for multiplicative inverse is proved to be efficient.

  • PDF

CORDIC using Heterogeneous Adders for Better Delay, Area and Power Trade-offs (향상된 연산시간, 회로면적, 소비전력의 절충관계를 위한 혼합가산기 기반 CORDIC)

  • Lee, Byeong-Seok;Lee, Jeong-Gun;Lee, Jeong-A
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.9-18
    • /
    • 2010
  • High performance is required with small size and low power in the mobile embedded system. A CORDIC algorithm can compute transcendental functions effectively with only small adders and shifters and is suitable one for the mobile embedded system. However CORDIC unit has performance degradation according due to iterative inter-rotations. Adder design is an important design unit to be optimized for a high performance and low power CORDIC unit. It is necessary to explore the design space of a CORDIC unit considering trade-offs of an adder unit while satisfying delay, area and power constraints. In this paper, we suggest a CORDIC architecture employing a heterogeneous adder and an optimization methodology for producing better optimal tradeoff points of CORDIC designs.

Development Process of Systems Engineering Management Plan(SEMP) for Large-Scale Complex System Programs (대형 복합 시스템 개발을 위한 효과적인 시스템공학 관리계획 개발 프로세스)

  • 유일상;박영원
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.4
    • /
    • pp.82-90
    • /
    • 2003
  • The Systems Engineering, as a methodology for engineering and management of today's ever-growing complex system, is a comprehensive and iterative problem-solving process. The process centers on the analysis and management of the stakeholders' needs throughout the entire life-cycle of a system and searches for an optimized system architecture. There are many essential needs and requirements to be met when a system development task is carried out. Systems Engineering Management Plan(SEMP), as a specification for system development process, must be established to satisfy constraints and requirements of stakeholders successfully and to prevent cost overrun and schedule delay. SEMP defines technical management functions and comprehensive plans for managing and controlling the entire system development process, specialty engineering processes, etc. Especially. in the case of a large-scale complex system development program where various disciplinary engineering such as mechanical; electrical; electronics; control; telecommunication; material; civil engineering etc. must be synthesized, it Is essential to develop SEMP to ensure systematic and continuous process improvements for quality and to prevent cost/schedule overruns. This study will enable the process knowledge management on the subject of SEMP as a core systems engineering management effort, that is, definitely defining and continuously managing specification of development process about requirements, functions, and process realization of it using a computer-aided systems engineering software. The paper suggests a systematic SEMP development process and demonstrates a data model and schema for computer-aided systems engineering software, RDD-100, for use in the development and management of SEMP. These are being applied to the systems engineering technology development task for the next-generation high-speed railway systems in progress.

Feature Extraction of Welds from Industrial Computed Radiography Using Image Analysis and Local Statistic Line-Clustering (산업용 CR 영상분석과 국부확률 선군집화에 의한 용접특징추출)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.103-110
    • /
    • 2008
  • A reliable extraction of welded area is the precedent task before the detection of weld defects in industrial radiography. This paper describes an attempt to detect and extract the welded features of steel tubes from the computed radiography(CR) images. The statistical properties are first analyzed on over 160 sample radiographic images which represent either weld or non-weld area to identify the differences between them. The analysis is then proceeded by pattern classification to determine the clustering parameters. These parameters are the width, the functional match, and continuity. The observed weld image is processed line by line to calculate these parameters for each flexible moving window in line image pixel set. The local statistic line-clustering method is used as the classifier to recognize each window data as weld or non-weld cluster. The sequential procedure is to track the edge lines between two distinct regions by iterative calculation of threshold, and it results in extracting the weld feature. Our methodology is concluded to be effective after experiment with CR weld images.

Synergetics based damage detection of frame structures using piezoceramic patches

  • Hong, Xiaobin;Ruan, Jiaobiao;Liu, Guixiong;Wang, Tao;Li, Youyong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.167-194
    • /
    • 2016
  • This paper investigates the Synergetics based Damage Detection Method (SDDM) for frame structures by using surface-bonded PZT (Lead Zirconate Titanate) patches. After analyzing the mechanism of pattern recognition from Synergetics, the operating framework with cooperation-competition-update process of SDDM was proposed. First, the dynamic identification equation of structural conditions was established and the adjoint vector (AV) set of original vector (OV) set was obtained by Generalized Inverse Matrix (GIM).Then, the order parameter equation and its evolution process were deduced through the strict mathematics ratiocination. Moreover, in order to complete online structural condition update feature, the iterative update algorithm was presented. Subsequently, the pathway in which SDDM was realized through the modified Synergetic Neural Network (SNN) was introduced and its assessment indices were confirmed. Finally, the experimental platform with a two-story frame structure was set up. The performances of the proposed methodology were tested for damage identifications by loosening various screw nuts group scenarios. The experiments were conducted in different damage degrees, the disturbance environment and the noisy environment, respectively. The results show the feasibility of SDDM using piezoceramic sensors and actuators, and demonstrate a strong ability of anti-disturbance and anti-noise in frame structure applications. This proposed approach can be extended to the similar structures for damage identification.

End-mill Modeling and Manufacturing Methodology via Cutting simulation (Cutting simulation을 이용한 End-milling cutter의 모델링 및 제작에 관한 연구)

  • Kim J.H.;Park S.J.;Kim J.H.;Park J.W.;Ko T.J.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.456-463
    • /
    • 2005
  • This paper describes a design process of end-milling cutters: solid model of the designed cutter is constructed along with computation of cutter geometry, and the wheel geometry as well as wheel positioning data fur fabricating end-mills with required cutter geometry is calculated. In the process, the main idea is to use the cutting simulation method by which the machined shape of an end-milling cutter is obtained via Boolean operation between a given grinding wheel and a cylindrical workpiece (raw stock). Major design parameters of a cutter such as rake angle, inner radius can be verified by interrogating the section profile of its solid model. We studied relations between various dimensional parameters and proposed an iterative approach to obtain the required geometry of a grinding wheel and the CL data fer machining an end-milling cutter satisfying the design parameters. This research has been implemented on a commercial CAD system by use of the API function programming, and is currently used by a tool maker in Korea. It can eliminate producing a physical prototype during the design stage, and it can be used fur virtual cutting test and analysis as well.

  • PDF

Application of Perturbation-based Sensitivity Analysis to Nuclear Characteristics (섭동론적 감도해석 이론의 원자로 핵특성에의 응용)

  • Byung Soo Lee;Mann Cho;Jeong Soo Han;Chung Hum Kim
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.78-84
    • /
    • 1986
  • An equation of material number density sensitivity coefficient is derived using first-order perturbation theory. The beginning of cycle of Super-Phenix I is taken as the reference system for this study. Effective multiplication factor of the reference system is defined as system response function and fuel enrichment and fuel effective density are chosen for the variation of reference input data since they are described by material number density which is a component of Boltzmann operator. The nuclear computational code system (KAERI-26 group cross section library/1DX/2DB/PERT-V) is employed for this calculation. Sensitivity coefficient of fuel enrichment on effective multiplication factor is 4.576 and sensitivity coefficient of effective fuel density on effective multiplication factor is 0.0756. This work shows that sensitivity methodology is lesser timeconsuming and gives more informations on important design parameters in comparison with the direct iterative calulation through large computer codes.

  • PDF