• Title/Summary/Keyword: iteration scheme

Search Result 243, Processing Time 0.025 seconds

CONVERGENCE THEOREMS FOR SP-ITERATION SCHEME IN A ORDERED HYPERBOLIC METRIC SPACE

  • Aggarwal, Sajan;Uddin, Izhar;Mujahid, Samad
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.961-969
    • /
    • 2021
  • In this paper, we study the ∆-convergence and strong convergence of SP-iteration scheme involving a nonexpansive mapping in partially ordered hyperbolic metric spaces. Also, we give an example to support our main result and compare SP-iteration scheme with the Mann iteration and Ishikawa iteration scheme. Thus, we generalize many previous results.

STRONG CONVERGENCE THEOREMS FOR A QUASI CONTRACTIVE TYPE MAPPING EMPLOYING A NEW ITERATIVE SCHEME WITH AN APPLICATION

  • Chauhan, Surjeet Singh;Utreja, Kiran;Imdad, Mohammad;Ahmadullah, Md
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.1-25
    • /
    • 2017
  • In this paper, we introduce a new scheme namely: CUIA-iterative scheme and utilize the same to prove a strong convergence theorem for quasi contractive mappings in Banach spaces. We also establish the equivalence of our new iterative scheme with various iterative schemes namely: Picard, Mann, Ishikawa, Agarwal et al., Noor, SP, CR etc for quasi contractive mappings besides carrying out a comparative study of rate of convergences of involve iterative schemes. The present new iterative scheme converges faster than above mentioned iterative schemes whose detailed comparison carried out with the help of different tables and graphs prepared with the help of MATLAB.

COMMON FIXED POINTS OF TWO NONEXPANSIVE MAPPINGS BY A MODIFIED FASTER ITERATION SCHEME

  • Khan, Safeer Hussain;Kim, Jong-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.973-985
    • /
    • 2010
  • We introduce an iteration scheme for approximating common fixed points of two mappings. On one hand, it extends a scheme due to Agarwal et al. [2] to the case of two mappings while on the other hand, it is faster than both the Ishikawa type scheme and the one studied by Yao and Chen [18] for the purpose in some sense. Using this scheme, we prove some weak and strong convergence results for approximating common fixed points of two nonexpansive self mappings. We also outline the proofs of these results to the case of nonexpansive nonself mappings.

An Ishikawa Iteration Scheme for two Nonlinear Mappings in CAT(0) Spaces

  • Sokhuma, Kritsana
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.4
    • /
    • pp.665-678
    • /
    • 2019
  • We construct an iteration scheme involving a hybrid pair of mappings, one a single-valued asymptotically nonexpansive mapping t and the other a multivalued nonexpansive mapping T, in a complete CAT(0) space. In the process, we remove a restricted condition (called the end-point condition) from results of Akkasriworn and Sokhuma [1] and and use this to prove some convergence theorems. The results concur with analogues for Banach spaces from Uddin et al. [16].

APPLICATIONS OF FIXED POINT THEORY IN HILBERT SPACES

  • Kiran Dewangan
    • Korean Journal of Mathematics
    • /
    • v.32 no.1
    • /
    • pp.59-72
    • /
    • 2024
  • In the presented paper, the first section contains strong convergence and demiclosedness property of a sequence generated by Karakaya et al. iteration scheme in a Hilbert space for quasi-nonexpansive mappings and also the comparison between the iteration scheme given by Karakaya et al. with well-known iteration schemes for the convergence rate. The second section contains some applications of the fixed point theory in solution of different mathematical problems.

AN EFFICIENT THIRD ORDER MANN-LIKE FIXED POINT SCHEME

  • Pravin, Singh;Virath, Singh;Shivani, Singh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.785-795
    • /
    • 2022
  • In this paper, we introduce a Mann-like three step iteration method and show that it can be used to approximate the fixed point of a weak contraction mapping. Furthermore, we prove that this scheme is equivalent to the Mann iterative scheme. A comparison is made with the other third order iterative methods. Results are presented in a table to support our conclusion.

IMPROVED GENERALIZED M-ITERATION FOR QUASI-NONEXPANSIVE MULTIVALUED MAPPINGS WITH APPLICATION IN REAL HILBERT SPACES

  • Akutsah, Francis;Narain, Ojen Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.59-82
    • /
    • 2022
  • In this paper, we present a modified (improved) generalized M-iteration with the inertial technique for three quasi-nonexpansive multivalued mappings in a real Hilbert space. In addition, we obtain a weak convergence result under suitable conditions and the strong convergence result is achieved using the hybrid projection method with our modified generalized M-iteration. Finally, we apply our convergence results to certain optimization problem, and present some numerical experiments to show the efficiency and applicability of the proposed method in comparison with other improved iterative methods (modified SP-iterative scheme) in the literature. The results obtained in this paper extend, generalize and improve several results in this direction.

STRONG AND Δ-CONVERGENCE OF A FASTER ITERATION PROCESS IN HYPERBOLIC SPACE

  • AKBULUT, SEZGIN;GUNDUZ, BIROL
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.209-219
    • /
    • 2015
  • In this article, we first give metric version of an iteration scheme of Agarwal et al. [1] and approximate fixed points of two finite families of nonexpansive mappings in hyperbolic spaces through this iteration scheme which is independent of but faster than Mann and Ishikawa scheme. Also we consider case of three finite families of nonexpansive mappings. But, we need an extra condition to get convergence. Our convergence theorems generalize and refine many know results in the current literature.

A P-type Iterative Learning Controller for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 P형 반복 학습 제어기)

  • 최준영;서원기
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.17-24
    • /
    • 2004
  • We present a P-type iterative learning control(ILC) scheme for uncertain robotic systems that perform the same tasks repetitively. The proposed ILC scheme comprises a linear feedback controller consisting of position error, and a feedforward and feedback teaming controller updated by current velocity error. As the learning iteration proceeds, the joint position and velocity mrs converge uniformly to zero. By adopting the learning gain dependent on the iteration number, we present joint position and velocity error bounds which converge at the arbitrarily tuned rate, and the joint position and velocity errors converge to zero in the iteration domain within the adopted error bounds. In contrast to other existing P-type ILC schemes, the proposed ILC scheme enables analysis and tuning of the convergence rate in the iteration domain by designing properly the learning gain.

A Study on the Numerical Methodologies of Hydroelasticity Analysis for Ship Springing Problem (스프링잉 응답을 위한 유탄성 해석의 수치기법에 대한 연구)

  • Kim, Yoo-Il;Kim, Kyong-Hwan;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.232-248
    • /
    • 2009
  • Numerical methodology to solve ship springing problem, which is basically fluid-structure interaction problem, was explored in this study. Solution of this hydroelasticity problem was sought by coupling higher order B-spline Rankine panel method and finite element method in time domain, each of which is introduced for fluid and structure domain respectively. Even though varieties of different combinations in terms of numerical scheme are possible and have been tried by many researchers to solve the problem, no systematic study regarding the characteristics of each scheme has been done so far. Here, extensive case studies have been done on the numerical schemes especially focusing on the iteration method, FE analysis of beam-like structure, handling of forward speed problem and so on. Two different iteration scheme, Newton style one and fixed point iteration, were tried in this study and results were compared between the two. For the solution of the FE-based equation of motion, direct integration and modal superposition method were compared with each other from the viewpoint of its efficiency and accuracy. Finally, calculation of second derivative of basis potential, which is difficult to obtain with accuracy within grid-based method like BEM was discussed.